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L’Organisation de Coopération et de Développement Economiques a été instituée par une
Convention signée le 14 décembre 1960, a Paris, par les Membres de I'Organisation Européenne de
Coopération Economique, ainsi que par le Canada et les Etats-Unis. Aux termes de cette
Convention, I’O.C.D .E. a pour objectif de promouvoir des politiques visant :

— a réaliser la plus forte expansion possible de ’économic et de I'emploi et une progression du
niveau de vie dans les pays Membres, tout en maintenant la stabilité financiére, et a contribuer
ainsi au développement de I'économie mondiale ;

—— a contribuer a une saine expansion économigue dans les pays Membres, ainsi que non membres,
en voie de développement économique ;

— a contribuer a Uexpansion du commerce mondial sur une base multilatérale et non discrimi-
natoire, conformément aux obligations internationales. ;

La personnalité juridique que possédait ['Organisation Européenne de Coopération Economique

se continue dans I'O.C.D.E., dont la création a pris effet le 30 septembre 1961.

Les Membres de I'O.C.D.E. sont : la République fédérale d’ Allemagne, I’ Autriche, la Belgique,
le Canada, le Danemark, I’ Espagne, les Etats-Unis, la France, la Gréce, I’ Irlande, I’Islande, I’ Italie.
le Luxembourg, la Norvége, les Pays-Bas, le Portugal, le Royaume-Uni, la Suéde, la Suisse, la Turquie,

L’Agence Européenne pour I’Energie Nucléaire (ENEA) a été créée en décembre 1957 dans le

cadre de I'O.E.C.E. afin de développer la collaboration atomique entre I’ensemble des pays de I’ Europe

occidentale. Un Comité de Direction de I’Energie Nucléaire comprenant des représentants de tous
les pays Membres et Associés est ['organe directeur de I’ENEA.

L’Agence a pour fonctions de (a) créer des entreprises comniunes ; trois entreprises ont été consti-
tuées : la Société Eurochemic pour le retraitement des combustibles irradiés (a Mol, Belgique), le
Projet de réacteur a eau lourde bouillante de Halden (Norvége), le Projet Dragon de réacteur a
haute température refroidi par gaz (a Winfrith, Royaume-Uni) ; (b) harmeniser les programmes de
recherches en facilitant la coopération entre les pays Membres dans les domaines scientifiques et
techniques, les échanges de personnel et d’informations ; (c) élaborer des régles uniformes en matiére
nucléaire pour 'ensemble de I’ Europe, notamment dans les domaines de la santé et de la sécurité,
du transport des matiéres radioactives, de la responsabilité civile et des assurances ; (d) étudier les
aspects économiques de I’énergie nucléaire en examinant périodiquement les programmes nationaux,
la place de Iénergie nucléaire dans la balance énergétique de I'Europe et le marché des combusti-

bles, matériaux et équipements nucléaires. .
L’ENEA travaille en liaison avec les autres organisations internationales intéressées, particuliére-

ment avec I’Euratom et I’ Agence Internationale de I’Energie Atomique.

The Organisation for Economic Co-operation and Development was set up under a Convention
signed in Paris on 14th December 1960 by the Member countries of the Organisation for European
Economic Co-operation and by Canada and the United States. This Convention provides that the
O.E.C.D. shall promote policies designed.

-— to achieve the highest sustainable economic growth and employment and a rising standard
of living in Member countries, while maintaining financial stability, and thus to contribute
to the development of the world economy;

— to contribute to sound economic expansion in Member as well as non-Member countries in
the process of economic development;

— 1o contribute to the expansion of world trade on a multilateral, non-discriminatory basis in
accordance with international obligations.

The legal personality possessed by the Organisation for European Economic Co-operation cont-

inues in the O.E.C.D., which came into being on 30th Seprember 1961.

The Members of O.E.C.D. are: Austria, Belgium, Canada, Denmark, France, the Federal
Republic of Germany, Greece, Iceland, Ireland, Italy, Luxembourg, the Netherlands, Norway, Por-
tugal, Spain, Sweden, Switzerland, Turkey, the United Kingdom and the United States.

The European Nuclear Energy Agency (ENEA) was set up in December 1957 as part of the O.E.E.C.

to develop nuclear collaboration between the countries of Western Europe. A Steering Committee

Jor Nuclear Energy, composed of representatives from all Member and Associated countries, is the
controlling body of ENEA.

The work of the Agency comprises (a) creation of joint undertakings, three of which — the Euro-
chemic Company for reprocessing irradiated fuels at Mol in Belgium, the Halden boiling heavy
water reactor project in Norway, and the Dragon high-temperature gas-cooled reactor project at
Winfrith in the United Kingdom — are already in operation; (b) the harmonisation of research pro-
grammes, encouraging scientific and technical co-operation between Member countries and the
exchange of information and personnel; (c) the establishment of uniform atomic regulations for
Europe, especially in the fields of health and safety, liability and insurance in case of accident, and
the transport of radioactive materials; (d) the study of the economic aspects of nuclear energy, by
a regular examination of national programmes, of the place of nuclear energy in Europe’s overall
energy balance sheet, and of the markets for nuclear fuels, materials and equipment.

ENEA works in liaison with the other international organisations concerned, especially Euratom
and the International Atomic Energy Agency.
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OPENING ADDRESS

by
Prof. Dr. Werner HEISENBERG
Director of the Max-Planck Institute for Physics and Astrophysics

May I welcome you on behalf of the physicists of this country and I
would like to say first of all how much I appreciate the honour of acting as
Honorary Chairman of the European Nuclear Energy Agency’s Symposium
on Criticality Control in Karlsruhe.

Twenty years ago, when the concept of criticality was discovered and
discussed by the theoreticians and experimental physicists, the diffusion of
neutrons in solid and liquid matter still belonged in the domain of funda-
mental physics. It was a somewhat new field and it was eagerly discussed.
I remember how satisfactory it was to find that even rather unexpected theor-
etical calculations were supported by the ensuing experiments and how
the experiments in turn clarified the theoretical aspects. In those days phy-
sicists, by comparing successive experimental and theoretical results, succeeded
surprisingly quickly in getting a quite clear insight into the essential features
of the criticality phenomenon. Now, as you all know, in the twenty years
that have followed this first development, the problems have swiftly changed
from questions of fundamental physics to problems of engineering, of design
and construction, and all these varied detailed questions in connection with
the control of criticality in reactors have been very thoroughly investigated
and in the majority of cases solved.

But this problem of criticality does not exist only in the reactor field. It
comes up wherever fissionable material is accumulated in large amounts,
for example in reprocessing plants, in conversion plants for enriched ura-
nium, or in factories where fuel elements are produced. We are here at a
point where questions of great practical importance need further clarification.
And it is at this point that the discussions of the present Symposium will
come in, and will, as we hope, lead to further clarification and to some progress.

Recent problems are similar to the old ones in principle, but they are
very different in practical detail. For instance, this interesting dependence
of criticality on geometrical conditions is still the same subject which puzzled
us so much in the early years; but now, of course, the geometry cannot be
arbitrarily chosen, and one has to take into account other problems which
have to be solved along with it. The absorption and reflection of neutrons
has also to be studied under new conditions.

However, 1 should certainly not launch into a discussion of problems
of which I understand so little, and in conclusion I should, perhaps, just
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add a few words to express my great satisfaction that these problems are now
discussed quite freely and openly in an international conference of experts,
in an atmosphere of complete mutual confidence and common interest. I
have absolutely no doubt that this is by far the best and quickest way to

success and progress.
Z‘Wa/—\ ' W/j
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FUNDAMENTALS OF CRITICALITY CONTROL

E. R. Woobpcock
United Kingdom Atomic Energy Authority

INTRODUCTION

It would perhaps be appropriate in this first paper to be presented at
a symposium on criticality control to attempt to lay the firm foundations of
the subject on which subsequent contributors can build. To start ab initio
from the basic nuclear physics would, however, only be repeating what is
fairly well known and readily available. The core of the edifice on this foun-
dation is largely mathematical in character, though leavened and restrained
by the work of the experimental physicist. But it is the facade, consisting
of the resulting principles, rules and recipes, which is probably of most inter-
est in the present context, as this is the information needed by the practical
man who is designing and operating plants for the processing of nuclear fuels.

The structure we are studying is by no means complete. Nevertheless,
it is valuable at the present time to stand back and survey the stage that has
been reached. It will not be possible to explore the whole building, but the
facade will be covered in detail together with the public rooms that lic imme-
diately behind. This introductory paper can then best help by summarizing
the most important fundamental results that have appeared from the mathe-
matical and experimental analyses and these can perhaps form the pegs on
which the subsequent discussions can be hung.

Consequently we will discuss, with illustrations as far as possible, three
main aspects of the criticality problem. In the first place it will be considered
what physical or mathematical parameters are best to measure or calculate
in order to determine how near a given assembly is to the critical state ;
secondly, the main factors affecting the criticality of a system will be out-
lined and the magnitude of their effects indicated; and thirdly, the basic prin-
ciples which can be applied to ensure criticality safety will be briefly described.

CRITICALITY

When a reactor is loaded with sufficient nuclear fuel, so that a self-sustain-
ing fission chain reaction takes place, it is said to have become critical. The
chain reaction is accompanied by the evolution of heat and of penetrating
radiation. To prevent the attainment of temperatures harmful to the mat-
erials of the reactor, the heat developed is removed by a gaseous or liquid
coolant and may be made to do useful work in a power plant. The radiations
are reflected back into the reactor core or largely absorbed by massive shields
designed to protect the operating personnel from their dangerous biological
effects.
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In a reactor the approach to critical is carefully controlled and its state
kept under careful surveillance by elaborate instrumentation so that criticality
is never exceeded by more than a very small amount. If, however, a critical
state were to be achieved or exceeded accidentally in a plant processing nuclear
fuel, it would almost certainly occur in equipment and under conditions
where no provision had been made for control or for the removal of the heat
generated, and where there might not be shielding for the protection of the
operators from the effects of radiation. Even were heat production so small
that the plant suffered minor or no damage, the amount of radiation received
by nearby personnel could easily reach lethal proportions, and since the safety
of the men operating such plants is of primary importance, every precaution
must be taken to prevent the occurrence of even minor criticality incidents.
With larger amounts of heat produced there are not only greater radiation
hazards, but there is the possibility of the release of radioactive and toxic
materials over a wide area.

MEASURES OF CRITICALITY

Before discussing how to measure criticality it is first necessary to give
a precise definition of the term. If a neutron is inserted into an assembly
containing fissionable material it will in general initiate a chain reaction.
This chain will terminate because eventually more neutrons are lost by capture
within the assembly or escape from it than descendants are born in fission.
It may not, however, terminate until the composition of the materials in the
assembly has changed by neutron-induced transmutation of its atoms or
physical changes have been ecffected by the energy released in the fissions.
The phenomenon of criticality depends on these neutron chain reactions
and since it is desirable to define it in relation to a specific assembly, we must
state the definition in terms of a fictitious assembly obtained by adding the
property that it does not undergo any changes as the result of a neutron chain
reaction. In such a fictitious assembly it is either possible or it is impossible
for a neutron chain reaction to continue indefinitely. If a continuing neutron
chain reaction is impossible the assembly is subcritical and if it is possible
the assembly is supercritical. A system which lies on the dividing line bet-
ween subcritical and supercritical is said to be critical.

The equivalent definition expressed mathematically is that criticality is
the condition that a certain equation — the neutron transport equation —
has a non-trivial, time-independent solution.

Neither of these forms of definition is of much practical value as it stands.
The fact that a continuing neutron chain reaction is possible does not mean
that it will necessarily be always initiated within any finite interval of time,
nor can a condition for the existence of a non-trivial solution of the neutron
transport equation be expressed in a form convenient for evaluation.

It is desirable, therefore, to devise some parameter to measure the criti-
cality of a system, i.e. how near it is to critical, which can be measured exper-
imentally or calculated to test a given assembly. Such a criticality para-
meter should change smoothly as the system passes through critical and
should be such that the critical state can be determined either by interpola-
tion between values for subcritical and for supercritical systems, or by extra-
pelation from subcritical systems.
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The Time Constant A

It can be shown mathematically that there is an eigendistribution of
neutrons possible in any finite system such that the number of neutrons in
any given state changes only with time according to the law

N= N;e¥

and that this distribution will be steadily approached so long as N is large
enough for the random variations in neutron behaviour to be negligible.
This eigendistribution is approached closely in a very short time for a super-
critical system but for a subcritical system can only be approached if N, is
large enough.

The parameter 2 is called the “ time constant” and is positive, zero or
negative according to whether the system is supercritical, critical or subcritical.

The time constant is a possible criticality parameter. Its behaviour as
a system passes through critical is illustrated in Figure 1 which has been
calculated for spheres containing mixtures of water and fissile element X,
which approximates to U 235, surrounded by a reflector of water. From
the calculation depicted by curve I, A appears to have the properties desirable
in a criticality parameter. However, curve I is a case where 2 is only a good
parameter for finding a critical size by extrapolation from supercritical values,
or by interpolation if its values are known for near-critical systems and,
although curve 11I allows extrapolation to critical from subcritical values,
it is only good for interpolation over short ranges. Furthermore this curve
does not give a good measure of the degree of criticality for well subcritical
systems.

This rather odd behaviour of X near critical arises from the changing
relative importance of neutrons of high and low velocity. For a system such
as I, where the slow neutrons are always of predominant importance, or for
one which only contains fast neutrons, A will behave smoothly and is quite
a suitable parameter to use, but for other systems its properties are not ideal.

Figure 1 is a theoretical result. The use of experimental values of X as
a criticality parameter is made somewhat different by the phenomenon of
delayed neutrons from fission. For calculation of critical size it is quite legi-
timate to ignore the time delay in the emission of these neutrons and this
has been done for Figure 2. When the delayed neutrons are correctly allowed
for, the result is as shown in Figure 2 which is for the same assembly as Curve I
in Figure 1. The so-called prompt critical size is shown, which is the size
which would be critical if the delayed neutrons were non-existent. The
portion of the curve near critical on the scale of this Figure isalmost indis-
tinguishable from a horizontal straight line. In fact it varies smoothly enough
to enable the critical size to be determined from measurements of A close to
critical. - Also the small value of time constant for slightly supercritical systems
makes it feasible to obtain the critical size experimentally by interpolation
from measurements on slightly subcritical and slightly supercritical systems.

The Generation Constant p

Although % is a possible parameter to adopt as a measure of criticality,
its shortcomings encourage the search for a more suitable quantity. These
shortcomings arise to a large extent both from the time delay in the emission
of some of the neutrons from a fission and from the wide range of the velo-
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Figure 1. Variation of time constant through critical, no delayed neutrons.

cities of the neutrons which can be present in nearly all the systems of interest.
That is to say, they are mainly associated with the use of time as an indepen-
dent variable. The only way to avoid time being an independent variable in
experimental work is to set up steady-state systems, but in a theoretical treat-
ment there is no such restriction. An alternative approach is to use gene-
ration, sometimes called * collision generation ”, as the variable.- This is
defined in such a way that if a neutron of generation g interacts with a nucleus,
the emergent neutrons are of generation (g -+ 1).

Exactly as for the time constant it can be shown that there is an eigen-
distribution of the neutrons which are in the same generation, such that the
number of neutrons of generation g, in any given state, is given by
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where p. can be called the  generation constant ”. This is calculated, in prac-
tice, by calculating the ratio A of neutrons in generation g to neutrons in
generation (g + 1), ie.
A=
Ny + 1
When an eigendistribution has been achieved, A is a constant independent
of g. In fact
A=e*

Unless the system is a long way from critical, A is not greatly different from
unity, so
p~l1l—A

and there is little difference between taking w or (1 — A) as the criticality
parameter.

Figure 3 shows how p varies through critical for the same three assem-
blies as were used to illustrate the behaviour of the time constant. It will
be seen that this parameter varies more smoothly than the time constant
and is therefore a preferable quantity to use.

The Multiplication Factor k

For the determination of the values of A or w it 1s necessary first to set
up an eigendistribution of neutrons, and indeed this is true for most methods
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of assessing criticality. The eigendistributions are not the same in each case,
though for critical systems they are closely related. The logarithmic rate
of change of the total number of neutrons in the system with time or with
generation is sensitive to divergences from the true eigendistribution. This
sensitivity can be reduced by giving more weight to neutrons in certain regions,
but it is often not easily possible to reduce it as much as is desirable. The
difficulty can be alleviated to some extent by focussing attention more strongly
on the neutrons that are important in maintaining the chain reaction.

Since fission must be a link in the chain, one way of doing this is to intro-
duce the concept of “fission generation”. The descendants of a neutron
in fission generation f remain in the same generation until they cause a fission.
Neutrons emerging from that fission are then in generation (f+ 1). With
this definition the same analysis as for collision generation can be followed.
In this case, however, by virtue of long usage, the exponential form is not
usually quoted but a multiplication factor k is defined by

_Noy s
N,

where N is the total number of neutrons of generation f emitted from fissions.
The variation of k as a system passes through critical is shown in Figure 4.

Only one curve is drawn, as this is typical. As can be seen, k is an acceptable
criticality parameter. It also has a useful interpretation, for a system with

k
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Figure 4. Variation of multiplication factor through critical.

criticality £ would become critical if the number of neutrons from a fission
were divided by k. Thus, when the fraction of delayed neutrons from a
fission is known, it is immediately possible to find prompt critical which,
as may be deduced from Figure 2, is the dividing line between supercritical
systems that can readily be controlled and those for which control is difficult.

Reflection R and Surface Multiplication M

By emphasizing the fissions and using N, a count of generation f neutrons
as they emerge from fissions initiated by generation (f— 1) neutrons, the
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sensitivity to the degree of settling into an eigendistribution has been much
reduced. An alternative approach, which appears to be equally effective
and also has certain other advantages, is to consider the balance of neutrons
crossing a boundary I' which divides the system into two regions.

If, when an eigendistribution has been achieved, a neutron crossing I
in one direction gives rise, on the average, to X descendants that return to
the boundary, and if a neutron crossing I' in the opposite direction results,
on the average, in Y descendants returning, then the quantity XY is a mea-
sure of criticality. The system is supercritical, critical or subcritical according
to whether this quantity is greater than, equal to or less than unity.

It is convenient, in systems which consist of a core containing fissile mate-
rial surrounded by a reflector, to choose I' as the boundary between core
and reflector. Then X becomes the reflection R, or albedo, of the reflector,
and Y becomes the surface multiplication M of the core. This approach
has been used for a wide variety of systems from which two related results
have emerged. In the first place it is only necessary in order to evaluate M
and R that the eigendistribution of neutrons be known at the boundary T’
and both these quantities have been found to be insensitive to small changes
in this distribution. Secondly, the value of M is found to be predominantly
a function of the core and to depend to a much less extent on the reflector,
whereas the value of R is predominantly a function of the reflector.

As criticality parameters it is best to use R and 1/M, as these vary smoothly
and nearly linearly as the system passes through critical. The critical state
is then that for which R = 1/M. A typical example is given in Figure 5 which
is for one of the systems used for the earlier illustrations.

0.4
REFLECTION R
0.3
H/x = 100
2 cm WATER REFLECTOR
0.2
0.1

0.8 0.9 _ 1.0 1.1 1.2
Radius in units of critical radius
Figure 5. Variation of surface multiplication M and reflection R through critical.
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Experimental Multiplications

The criticality parameters described in the last three sections are useful
for the theoretical calculation of a critical size but are not easily adaptable
to experimental measurement. However, the surface multiplication intro-
duced above is an example of a more general concept of multiplication which
is the basis of most experimental measurements of critical size.

Let us suppose that a source S of neutrons and a counter C to detect
neutrons are placed inside or in the vicinity of an assembly containing fissile
material, and that the counter reading when corrected for background is C,.
Suppose also that when the fissile material is removed, the corrected counter
reading is C,. Then the quantity

M= &
0
is a multiplication which measures the effect of the presence of the fissile
material. Furthermore, when the system becomes critical M, becomes infi-
nite, so a graph of 1/M, plotted against the variable dimension can be used
to extrapolate to critical size. This is a crude outline of principle and there
are numerous refinements necessary to devise an.acceptable procedure. In
particular it is desirable to continue measurements near to the critical size
and to so position the source and counter that a reliable extrapolation can
be made.

A particular case, by way of illustration, is to find the critical size of a
system consisting of a spherical core surrounded by a reflector. For this
experiment it is best to place the source at the centre of the core. The multi-
plication M, is then given by the ratio

rate at which neutrons cross core boundary outwards

e

rate of emission of neutrons from source

If we define a central source multiplication M, as the value of this M, for
an unreflected core, we have the relation

where R and M are the reflection and surface multiplication described in the
preceding section.

The behaviour of M, in a typical case for an unmoderated spherical core
is illustrated in Figure 6 ) which demonstrates that this experimental approach
is a reliable method of measuring critical size for these spherical systems.

PROPERTIES OF R AND M

The use of reflection and surface multiplication as criticality parameters
is not yet well documented in the literature, so it may be useful to include
here some further discussion on their properties. The surface multiplication M
of a core depends upon the core size, shape and material and also on the
angular distribution and energy spectrum of the neutrons entering. The
angular distribution is not an important factor in practice, since neutrons
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Figure 6. Variation with size of the multiplication ( Me) from a central source in a spherical
system.

returning from a reflector of any material are distributed in angle in substan-
tially the same way. The incident neutron energy can be anywhere between
that of thermal neutrons and that of newly-born fission neutrons. An extreme
effect will occur when the core is of fissile metal, e.g. U 235 or Pu 239. Then
a thermal neutron returning will be absorbed very close to the core boundary
giving, on the average, about two neutrons of fission energy. One of these,
on the average, will escape immediatcly and the other enter the core and be
multiplied. So the multiplication of thermal neutrons is given by

M(thermal) = M(fission) + 1.

However, in such a case the neutrons reflected back to the core will always
contain a high proportion of neutrons above thermal energies, so in practice
this surface multiplication always lies in the range

M(fission) << M < M(fission) + 0.5.

Another extreme will occur if the core absorbs strongly neutrons which have
been slowed down from their original fission energies. This will result in

M < M(fission).

So in all cases an upper bound to M is M(fission) + 0.5 and very often M(fis-
sion) will be a lower bound. Hence the effect of the reflector on the value
of M is very limited.
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The size, shape and material of the core are the most important factors
influencing M. The extreme values of 1/M are 1 for a core of infinitesimal
size and O for a core that would be critical if unreflected. It appears from
the results of a number of calculations that, for cores of the same material
of geometrically similar shape, 1/M varies almost linearly with linear dimen-
sion between these limits. Some of this evidence is given in Figure 7 which
is for spheres and infinite cylinders of a variety of materials, cadmium-plated
and reflected by wood, so that the incoming neutrons included none of thermal
energies. The individual points were calculated by a Monte Carlo method
which inevitably leaves some statistical uncertainty, the amount of which
is indicated by marking the standard deviation in each case.
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Figure 7. Surface multiplication M.

It follows, therefore, that not only is M a good criticality parameter
but also that a reasonably good estimate of its value can be made from no
more knowledge than the unreflected critical size of a core of the same mate-
rial and geometrically similar shape.

The reflection R depends on the same factors that have been discussed
in their influence on M, i.e. the angular distribution and energy spectrum
of the incident neutrons and the material, size and shape of the reflector.
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Figure 8 shows some typical values which arose from the same calculations
that give Figure 7. The full lines are for very thick reflectors. The dashed
line indicates the result of limiting the wood thickness so that (outer wood
radius) x (wood density) = 8.3 g/cm?, and if continued the dashed line
would reach R = 0 at this point. As for multiplication, the angular distri-
bution of the incident neutrons can be ignored. The effect of energy spectrum
in one particular case is indicated in the Figure.
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Figure 8. Reflection R.

For a reflector of fixed thickness, which may be infinite, the value of R
increases monotonically as the radius of the inner surface increases (i.e. as
the core size increases) reaching an asymptotic value which is the reflection
from an infinite slab R,.. This value depends on the reflector material and
thickness, increasing from zero at zero thickness and reaching an asymptotic
value for large thicknesses. Table I shows some typical values of R, where
the incident spectrum is that from a U 235 metal core.

It will be noted that R, reaches its maximum value for water at a thick-
ness of 16 cm and has nearly reached this value at 8 cm, whereas graphite
needs 60 cm at least to become effectively infinite. This difference will be
referred to in a later section when the effect of reflectors on critical size is
discussed.
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TasLe I. SOME VALUES OF Ry, FOR INCIDENT
NEUTRONS FROM U 235 METAL

Thickness
Material of Reflector Res
cm
Wood (Cd-plated)
(0.6 g/cm®) ..... 20 0.46
Graphite
(1.7 g/em3) @ | 8 0.59
16 0.73
32 0.84
64 0.92
Water
(1.0 g/cm3) & |, 4 0.45
8 0.55
16 & over 0.565 -

FACTORS AFFECTING CRITICALITY

The critical size of an assembly of fissile material depends on all the
materials present, whether fissile or non-fissile, their shape, disposition and
density. In order to sort out and catalogue the effects of these variables to
some extent, we will focus the attention mainly on systems which can be
divided into a core, containing all the fissile material, surrounded by a reflec-
tor. We will then look in turn at the effect of the shape of the core, the mat-
erials which comprise the core and their density, and finally the reflector. In
order to keep the discussion within bounds, only homogeneous cores will be
considered.

Effect of Shape - Basic Parameters

It can be shown that a spherical core or, exceptionally, a core that is
very nearly a sphere, will give the smallest critical volume and mass for these
single core-reflector systems. The effect of variation from this simple shape
is illustrated by the curves of Figure 9, which were obtained experimentally 4.
These curves are for cylinders of varying elongation or squatness and give
critical masses in units of the spherical critical mass. They show an appre-
ciable increase in critical mass, or volume, as the core departs appreciably
from a near isometric cylinder. Another way of interpreting these results
is to say that it is possible to increase the critical mass of the core by restrict-
ing its diameter, on the one hand, or, on the other, by restricting its height.

It is pertinent, therefore, to ask whether there is a diameter of core which
can never become critical, whatever its height, or whether there is a height
of core which can never become critical, whatever its diameter. This proves
indeed to be possible and the relevant values are.important to know as a
basis for ensuring safety. There are thus four basic parameters which can
be listed for each core of given composition and density surrounded by a
given reflector. These are the critical mass and volume of the spherical core,
the critical diameter of the infinite cylindrical core and the critical thickness
of the infinite slab core. By way of illustration, the results of some recent
calculations of these basic parameters for idealized plutonium solutions are
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Figure 9. Effect of shape on critical mass.
(From Paxton, LAMS 2415).

shown in Figures 10 and 11. The cores are in each case reflected by effec-
tively infinite water and show the variation of the basic parameters with x
when the core material is Pu(NO,),.xH ,O and x > 5; together with, for
spherical cores only, values for PuO,.xH,O and x < 5. To prevent confu-
sion it is perhaps worth noting that log (I - H/Pu ratio) has been used as
abcissa in Figure 10 in order to enable the points at H/Pu= 0 to be included.

Density Scaling

In order to separate the various effects resulting from changing the mat-
erial composition of the core, it is useful to consider the density of the fissile
isotope as fixed and examine the effect of adding other non-fissile materials
to such a core. To relate these results, therefore, to real systems, it will be
necessary to know the effect of changing the core density, and to introduce
the density scaling laws.

Probably the only law in the whole subject of criticality which is simple,
useful and exact is that which, when formulated in terms of critical size,
states:

In a critical system, if the densities are increased everywhere to

x times their initial value and all the linear dimensions are reduced to

1/x times their initial value, the system will remain critical.

If r is a typical linear dimension of the core of such a critical system,
0. the core density and g, the reflector density, this law states that
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roce,t (1)

provided the ratio p,/p, remains constant.
This law is sometimes stated in terms of critical mass as

critical mass ocp, 2

The scaling law of which a special case is quoted above, can be applied
to the core and reflector separately. For the core it states that the surface
multiplication M does not change if the density and dimensions of the core
are changed in inverse proportion. For the reflector it states that the reflec-
tion R does not change if the density and dimensions of the reflector are
changed in inverse proportion.

Using this formulation and the fact that MR = 1 for a critical system,
a more general density scaling law can be deduced, that for a critical system

rocp, - ®p @ @
. 3(1/M) /oR
Wwhere 1/<I)—1——?T 3

provided @ is independent of r.
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The partial differentials are taken at the critical value of r, the densities
remaining constant. That is, they represent the slopes of the curves of Figure 5
at their point of intersection.

It is not difficult to see that ® cannot be entirely independent* of r,
since for very large values R becomes nearly constant and so ® = 0, but ®
cannot vanish for smaller r except perhaps at r= 0. Hence for very large
cores, equation (1) gives the effect of density changes in the core and, in this
case, density changes in a thick reflector are unimportant. However, it has
been shown by experiment and calculation that in all cases tested, @ retains
a substantially constant value over a wide range of density variation, and
therefore equation (2) represents a valuable density scaling law. Some values
of ® are given in Table II.

The last four results are deduced from experiment and quoted by
H. C. Paxton . The other results are from calculation.

Effect of Added Scatterers

Having discussed the density scaling laws, we will now consider the effect
of adding different diluents to the fissile core without changing the density
of the fissile isotope. The addition of materials which scatter neutrons without

* Except for an infinite slab for which OR = 0 and ® = 0.
or
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Tasie II. VALUES OF ® FOR USE IN THE DENSITY
SCALING LAW EQUATION (2)

Core Geometry Reflector (]

U 235, Pu239 ....| sphere or [Cd plate surrounded

U235F, ........ infinite by wood 0.11
cylinder

PUOSs i v v infinite

U 2350,F,.25H,0 cylinder » » 0.11

Pu(NO;),.40H,0 .

Pu(NO,),.400H,0 sphere Water 0.058

Pu(NO;),.5H,0 .. sphere Water 0.10

U23s ........... sphere Natural uranium 0.27

U235H,C ....... sphere Natural uranium 0.14

U 2350,F,,115H,0| isometric Water ~ 0.04
cylinder

Pu239 .......... sphere Natural uranium | ~ 0.3

appreciably changing their energy will, in most cases, make it more difficult
for the neutrons in the core to escape. They will thus increase the chance
. that a neutron in the core can give birth to further neutrons by causing fission.
In this way the multiplication M of the core will increase and consequently
the critical mass will decrease.

If the core is in the form of a thin disc or slab, however, the reverse effect
will occur. The additional scattering centres will now tend to scatter neutrons
out of the core and the critical size will increase.

As an illustration, for spherical cores, the results shown in Figure 10
at an H/Pu atomic ratio of 10 can be used. The nitrate core contains, for
each Pu atom,

4 atoms of nitrogen
17 atoms of oxygen
10 atoms of hydrogen.

The Pu density is 1.20 g/cm?, and its critical mass is 24 kg of Pu. The oxide
core contains, for each Pu atom,

7 atoms of oxygen
10 atoms of hydrogen.

The Pu density is 2.10 g/cm? and its critical mass is 15.5 kg of Pu.
Applying the density scaling law to the oxide core, we deduce that at a
Pu density of 1.20 g/cm? its critical mass would be 40 kg of Pu.
The difference between the two cores is that the nitrate core contains
for each Pu atom,

4 additional atoms of nitrogen
and 10 additional atoms of oxygen

and the addition of these atoms to the oxide core therefore reduces the critical

mass from 40 kg to 24 kg, i.e. by 40 9. The oxygen atoms are almost pure

. scatterers. The nitrogen atoms give a little neutron absorption as well as
scattering, which would tend to increase the critical mass. The reduction

- from 40 kg to 24 kg therefore represents a slight underestimate of the effect
of adding additional scatterers. This and some other pairs of comparative
results are given in Table LII.
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TasLe 11I. EFFECT OF ADDED SCATTERING ATOMS
ON CRITICAL SIZE

Density Percentage
Pgrrzilt'xllceaii:r (:)fr l;}] Reflector Core 1 Core 11 c?gnaggdgéxe
glem® scatterers
Slab thickness ..| 10.1 Water | Pu 1.6 cm| PuO, 1.9 cm|18% increase
Cylinder diameter| 10.1 None Pu 13 cm| PuO, 12 c¢m|10% cdecrease
Cd &
» 10.1 Wood | Pu 9.6 cm; PuO, 8.6 cm|10% decrease
» 5.1 None |*U 47 cm{*UF, 29 c¢m|389% decrease
Cd &
» 5.1 Wood [*U 34 cm[*UF, 21 c¢m|38Y%; decrease
Sphere, mass of
PU ews o sws s 10.1 Water | Pu 16.5kg| PuO, 12 kg|28% decrease
Sphere, mass of U| 5.1 None [(*U 710 kg/*UF, 160 kg|77% decrease
Sphere, mass of
PU « savwun e s 1.2 Water |[PuO,.5H,0| 40 kg/Pu(NO,),.5H,0| 24 kg|40% decrease

* 92.5% U 235, 7.5%U 238.

Effect of Added Moderators

Of the possible effects of adding diluent to a fissile core, that of neutron
moderation is the most spectacular and important. The fast neutrons born
in fission are moderated, or slowed down, by scattering in any material. For
materials of high atomic weight, the possible slowing down is limited in extent.
For materials of low atomic weight, and in particular for hydrogen, the mode-
ration will be sufficient to reduce neutrons to energies where they will have a
bigger chance of causing a fission and will thus decrease the critical size.
Hydrogen is the most effective moderator and is commonly present in the
form of water. For other elements the moderating power is much less, and
often balanced to some extent by neutron absorption. So, in practice, carbon,
beryllium and deuterium are the only important moderators apart from
hydrogen.

The effect of adding water to a core of plutonium nitrate solution for
which the plutonium density is maintained constant, is illustrated in Figure 12.
This is derived from Figure 10 by removing the plutonium density variation,
and shows that the critical mass can vary by a factor of nearly 10° as the H/Pu
ratio increases from 0 to 2,000.

Effect of Added Absorbers

The third possible effect of adding a diluent to the core is to absorb
neutrons. Such a process can only increase the critical size. The addition
of nitrogen to the Pu(NO,),.400H ,0 spherical core so as to make the N/Pu
ratio 20 increases* the critical mass by 5%. This demonstrates that even
a weak poison like nitrogen (thermal absorption cross section 1.9 barns)

* Deduced from reference 3,

32




can have a detectable effect on critical mass. The addition of a strong poison
like boron (thermal absorption cross section 755 barns) will make a very
appreciable difference.

The small neutron absorption of hydrogen itself (thermal absorption
cross section 0.33 barns) is important where dilute solutions, i.e. with a high
H/X ratio, are concerned. The minimum shown in the curve of Figure 12
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10,000

1,000 \

Critical mass-kg of Pu
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Figure 12. Variation of critical mass with moderation at constant plutonium density.
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is due to this effect. In fact a plutonium solution cannot be made critical
at any size if the H/Pu ratio is greater than about 3,600.

Overall Effect of Core Dilution

The preceding sections have explained separately the three effects that
occur as the result of core dilution. In any real physical problem not only
will the effects of additional scattering, moderation and absorption be present
to varying degrees but also the density of the fissile material will be reduced.
The overall picture can be illustrated qualitatively by considering the parti-
cular cores shown in Figure 10.

Suppose water is added steadily to a spherical core of PuO, in such a
way as to keep the fissile material always homogeneously disposed. First,
when a very little water has been added, both the critical mass and the critical
volume increase. At this stage the effect of the change of density of the Pu
predominates, the additional scattering has only a small effect and there is
not enough hydrogen present to give any appreciable moderation. Soon,
however, when the H/Pu ratio exceeds about 4 the effect of neutron mode-
ration begins to be felt and the critical mass begins to decrease, although the
critical volume continues to increase. At an H/Pu between 10 and 20 the
moderation causes the critical volume to decrease also. The plutonium
oxide curves will be of similar shape to the nitrate curves for the higher mode-
rations. Both the critical mass and critical volume decrease to a minimum
and then start to rise again, as the absorption of neutrons by the hydrogen
begins to take effect, and both become infinite at H/Pu of about 3,600.

Since it is encountered in many of the common uranium fuels, the isotope
U 238 is a diluent of particular importance. U 238 dilution results in a reduc-
tion in the density of the U 235 fuel, additional centres for elastic scattering,
absorption and neutron moderation by inelastic scattering, the absorption
being mainly in the region of neutron energies from 5 ev to a few Keyv, the
socalled “ resonance region”. For uranium metal cores the overall result
is that the mass of U 235 in a critical sphere follows the law, derived empi-
rically by Paxton ¥, that

U 235 critical mass oc (U 235 concentration)=%7

for U 235 isotopic concentrations greater than 25 9, either unreflected or
with a thick uranium reflector. For lower U 235 metal isotopic concentra-
tions the critical mass rises more quickly, becoming infinite at a concentration
between 5 and 6 %.

If there is also sufficient hydrogen in the core as moderator, the mass of
U 235 in a critical sphere is reduced and the limiting concentration below
which such a core cannot become critical occurs when the uranium consists
of about 1 % U 235 and 99 9% U 238. This limiting concentration can be
further reduced to about that in natural uranium by separating the uranium
from the hydrogenous moderator to form a latticed arrangement. In such
a core the neutrons are, to some extent, separated from the U 238 while they
are being slowed down and thus have a greater chance of reaching thermal
energies without being caught in the U 238 resonance region on the way.

Effect of Reflectors

The effect of reflection of neutrons back to the fissile core was mentioned
in the discussion of criticality parameters (See pages 21 and 23) and from
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such graphs as Figures 7 and 8 the effect of a given reflection R on critical
mass can be deduced.

The reflection depends on the thickness of the reflector and Figure 13
illustrates how this affects the critical mass of spheres of two of the plutonium
“solutions ” calculated in the case of a water reflector. It will be seen that
water is effectively infinite at a thickness of 8 cm if H/Pu = 800 and at a thick-
ness of 9 cm for H/Pu= 10.
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Figure 13. Effect of reflector thickness on critical mass of plutonium solutions.

Some more comprehensive results are given in Figure 14 @ which shows
the effect on the critical mass of a U 235 metal sphere of reflectors of various
thicknesses and material. Beryllium, together with BeO, is the most effi-
cient non-fissile reflector known. The curve for aluminium is typical of
common structural materials. Uranium is a reflector whose efficiency is
enhanced somewhat by fission. Water is peculiar in that up to a thickness
of 2 in. it is a better reflector than most other materials of the same thickness,
but any increase in thickness beyond 2 in. results in very little increased reflec-
tion. This peculiarity is shared by many hydrogeneous compounds such
as oils or waxes. On the other hand, graphite is not an effective reflector in
small thicknesses but is one of the best in large thicknesses. A similar diffe-
rence was noticed for the slab reflections listed in Table 1, though for this
case it needed more than a 2-in. thickness of water to be effectively
infinite.
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The term “ better reflector ” is used above in the sense that it gives the
smaller critical size. This does not necessarily mean that it gives the larger
value of R since there may also be some effect on M. Thus an infinite slab
of U 235 (92.5 ;) metal reflected on each side by 8 cm thick graphite is cri-
tical at a thickness of 2.7 cm, R being 0.59 and M being 1.7. However, a
U 235 slab of this thickness if reflected by 8 cm thick water would have a
surface multiplication M of 2.1 and the critical thickness is only 1.8 cm. The
enhanced multiplication arises because neutrons reflected from the water
have an appreciably softer spectrum than those reflected from this thickness
of graphite. Thus, although R for 8 cm thick water is 0.55, which is less
than that for a similar thickness of graphite, the water is in this case the  better
reflector .

Reflectors will often occur which consist of two or more layers of diffe-
rent materials. Such mixed reflectors often give rise to phenomena which
are not apparent from a knowledge of the effects of the materials separately.
For example, there is nothing peculiar about pure cadmium as a reflector
of a core of plutonium or enriched uranium metal, yet a mixed reflector con-
sisting of a thin layer of cadmium, next to the core, surrounded by thick
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water, results in a critical size appreciably larger than that for either water
or cadmium alone. This phenomenon can be readily explained by the fact
that many of the reflected neutrons returning from a thick water reflector
are of thermal energies and are absorbed in the cadmium, whereas for a pure
cadmium reflector practically all of the reflected neutrons are of high energy
and are not absorbed. More difficult to explain are the two phenomena de-
picted in Figure 15. Curve 1 shows the effect of a layer of steel between
the core and a thick water reflector, and here again a larger critical size is
obtained with a mixed reflector than with a pure one of either steel or water.
The opposite effect is illustrated in curve I1 ® of Figure 15 which shows a

14
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I - u®S soLuTioN (”/Um = 61:8) IN BIN. DIAMETER CYLINDER
REFLECTED ON CURVED SURFACE ONLY BY A STEEL LAYER AND
THICK WATER
(FROM CALLIHAN ot ol  K-643)
Il - TENTATIVE CURVE FOR U™®H,C SPHERE REFLECTED BY LAYER
OF NICKEL AND NATURAL URANIUM TOTAL THICKNESS OF
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12 (FROM LINENBERGER et of NUC SCI & ENG 7. 44-57 (1960))
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Figure 15. Effect of composite reflectors on critical mass.
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case where a mixed reflector consisting of nickel, next to the core, surrounded
by uranium, gives a smaller critical mass than a reflector of either material
alone.

A reflector is most effective in reducing critical size when it is in contact
with the core. A small gap between reflector and core increases the critical
size by a significant amount. Very roughly, in spherical or cylindrical geo-
metry, a gap of width 10 9 of the core radius increases the critical mass by
20-30 %.

Interaction

So far we have discussed systems consisting of a single core surrounded
by a reflector. It will often happen in practice that the fissionable material
is divided into a number of separate cores. This will occur, for example,
in a chemical processing plant where the fissile material is confined to several
separate vessels, in a storage vault, or in many other circumstances. The
new phenomenon that arises is that neutrons can now pass backwards and
forwards between one core and another with the possibility of multiplying.

It is of interest, by way of illustration, to study the one-dimensional
model of a series of parallel slabs each of which is of finite thickness but of
infinite face area:

eV £

Nign
"R
T .,T' .

Suppose that for a typical slab, when the system is critical, a flux of
neutrons F is entering its left-hand face; a flux G is leaving its left-hand face;
a flux F’ is leaving its right-hand face and a flux G’ is entering its right-hand
face.

G=RF TG’

Then F=RG + TF
where R is the fraction reflected of neutrons entering from the left and T
the fraction transmitted and R’ and T’ are reflections and transmissions of
neutrons entering from the right. Since fissions will occur in some of the
slabs the reflections and transmissions are not necessarily less than unity.

These equations can be written as

G’ = (G — RF)/T’ 3)
F = R'G’ + TF

So, knowing F, G and the quantities R, R’, T and T, the values of F’
and G’-can be calculated. For the left-hand boundary slab of the array
F,= 0 and G, can be given an arbitrary value, say G,= 1. The above equa-
tions (3) then enable the fluxes to be calculated step by step through the system.
If such a calculation yields, for the right-hand boundary slab, G',= 0, the
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system is critical. So, if R, R’, T and T for each slab are known, critical

configurations can be calculated.

If the array consists of an equispaced series of similar slabs of fissile
material separated by layers of shielding material, the equations can be sim-
plified. For each slab we will have R’= R and T'= T. Let us now intro-
duce the surface multiplication for the fissile slabs

M=R+T

and Jet R, and T, be the reflection and transmission of the shielding slabs.
We define an interaction parameter

1 T,M
2 10
= —— 4
1= | R M “)
and, by making the simplifying assumption that
F=G (5)

for each fissile slab, equations (3) can be reduced to
Fi= qF;;; + F;al

where F; is the flux leaving one side of the j~** fissile slab.
The critical number of slabs then only depends on ¢, and some values
are given in Table IV.

TABLE 1V
Interaction Critical Number
Parameter ¢ of Slabs

o0 1
1.000 2
0.707 3
0.618 4
0.577 5
0.555 6
0.521 10
0.500 oc

The isotropic assumption, equation (5), can lead to underestimates or
overestimates of critical number, depending on the size and material of the
individual slabs. It is therefore not particularly valuable for interacting
slab problems for which equations (3) can be solved directly. However,
as will appear in a later paper, it is a useful parameter for the assessment
of interacting arrays of more general geometry, and conservatism can be
assured by overestimating the value of g. This can be done for slabs, for
example, by using, instead of M, the quantity

2xmax (R, T).

Some results have been calculated ® by equations (3) for two similar
parallel slabs of uranium metal, density 18.7 g/cm? containing 92.5 % U 235
separated by water and reflected by thick water on their outer surfaces. These
are given in Table V where the uranium thickness quoted is the sum of the
thicknesses of the two uranium slabs.
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TABLE V

Separation Critical Uranium
of Slabs Thickness
(em) (em)

1.71
0.76
0.40
0.51
1.00
1.50

SO RANO

It will be seen that the critical uranium thickness reaches a minimum at
a separation of about 4 cm and thereafter increases as the separation increases.

It is of interest then to ask how the criticality of the system changes if
the uranium goes slowly into solution in the water so that we have uranium
metal slabs separated by 4 cm of a uranium/water mixture and reflected on
their outer faces by a uranium/water mixture. The results in Table VI are
for 4 cm thickness of outer reflector, the H/U ratios refer to the uranium/-
water mixtures and the total uranium thickness is the thickness of the slab
that would be obtained if all the uranium present were gathered together
into a single slab of metal.

TaBLE VI X
‘SOLUTION "’ OF TWO URANIUM SLABS 4 cm APART

Total Amount

H/U of Uranium

ratio when Critical
(cm)
oc 1.84
2,00 1.50
1,000 1.46
500 1.44
200 1.30
50 0.78
20 1.01

It will be seen that as ¢ solution * proceeds the critical uranium thickness
goes through a further minimum.

These examples illustrate that a more dangerous system from a criti-
cality point of view can be achieved when the fissile material is in separate
lumps than when it is all gathered together, and also suggest that, during
solution of uranium in a hydrogeneous liquid, a system may appear at an
intermediate stage which is more dangerous than at either end point.

The whole subject of interacting arrays has not yet been explored thor-
oughly enough to formalize the factors affecting criticality as fully as for
systems with a single core. There is scope for further experimental work
in this field. The theoretical side is the subject of a lecture at a later session
and so it will not be further discussed here.
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PRECAUTIONS TO AvOID CRITICALITY

In the preceding sections we have discussed at some length the factors
that affect the criticality of a system containing fissile material. With this
knowledge, the next question that arises is how to devise a system of control,
in a practical case such as a plant processing fissile material, to ensure that a
critical state is not reached accidentally. There are basically two possible
ways of effecting such a control. One is to divide the plant into units of such
a restricted size that a critical assembly cannot be formed whatever material
is present in these units. The other is to impose a restriction on the amount
of fissile material that can enter the various parts of the plant. These can be
called respectively geometrical and operational control. It is clearly ideal
to have a plant for which the safety is ensured entirely by geometrical control,
but this ideal is rarely entirely achieved in practice. It will often happen
that it is impossible or grossly uneconomical to carry out the desired processes
in vessels which are geometrically safe. So, as a rule, some degree of opera-
tional control has to be imposed. In particular, certain materials can be
readily excluded from the plant or may need to be excluded to make its ope-
ration possible. For example, the presence of plutonium can often be excluded
from a uranium processing plant, or that of uranium metal from a plant
handling uranium compounds and solutions.

Geometrical Control

As an example, suppose that in a particular chemical plant it is possible
to ensure that the only materials which can be present are plutonium nitrate
solutions, water and precipitates of plutonium oxide (PuO,). Reference
to Figures 10 and 11 shows that for plutonium nitrate solutions the minimum
critical volume is 7.2 litres, the minimum critical cylinder diameter is 15.4 cm
and the minimum critical slab thickness is 4.6 cm. The addition of further
nitric acid to this solution will increase the minimum critical parameters since
the poisoning effect of nitrogen by neutron absorption is the predominant
result of this change. Plutonium oxide precipitates, however, give lower
values of these critical parameters at zero moderation. At high moderations
they give minimum values which are very little different from those for the
nitrate solutions. Consequently, for the plant to be geometrically safe, it
must be designed to be subcritical even if filled with dry PuO ., the minimum
critical parameters for which are volume 1.18 litres, diameter 8.3 cm* and
thickness 1.9 cm. Since the plant envisaged will contain a number of vessels,
interaction between them will affect the criticality. To allow for this the
individual vessels will have to be separated by distances which will be greater
the nearer each vessel is to critical. In order to keep the plant within bounds
the individual vessels must therefore not be allowed to approach too near
to the critical state. Let us say that a factor of 0.8 should be applied to the
volume and 0.92 to the diameter and thickness.

The result of this analysis is that if the plant is built so that no vessel
size exceeds either a volume of 0.94 litre or a diameter of 7.6 cm* or a thick-
ness of 1.75 cm and if the vessels are separated by at least a specified distance
(which will give about the usual separation for this type of plant), and are

*  Approximate figure for illustration only.
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connected by pipework of no more than, say, 4 cm diameter, then it will
be geometrically safe.

Mass Limitation

It may well happen, however, that a plant built to these specifications is
not satisfactory and it proves necessary to introduce some form of opera-
tional control to enable the geometrical limitations to be relaxed. In some
cases it may be desirable to go to the extreme and remove all geometrical
limitation. Control may then be achieved by restricting the mass of fissile
material in each vessel of the plant. However well it is applied, this type of
control cannot be as rigid as a geometrical limitation. So it is desirable, and
has become customary in many places, to apply in addition a safety factor
of 0.5, giving 200 g of plutonium as the maximum allowed in any vessel.

It might be possible to relax this limitation on mass if some geometrical
control were also applied. Figure 10 indicates that the critical conditions
giving minimum mass need more than the minimum volume, so some restric-
tion on volume may allow the mass limitation to be increased. Figure 16
has been prepared for the plutonium nitrate solutions to explore this possi-
bility and from this it is clear that in this case no worthwhile relaxation of the
mass limit can result from a volume restriction.

30
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Figure 16. Critical conditions for Pu(NOg),e < H,O spheres, water-reflected.
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It is more worthwhile, however, to impose a restriction on the diameter
of a vessel and Figure 17 illustrates this . Tt is a curve showing diameter
versus minimum critical mass deduced from experiments with aqueous solu-
tions of uranyl fluoride, highly enriched in U235. The minimum critical
mass of this solution is 0.88 kg*. If the vessel is restricted to a diameter of
7 in. this rises to 1.6 kg, whereas it is necessary to restrict the diameter to
5.5 in. to ensure that such a solution cannot become critical in any amount.
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Figure 17. Critical conditions for UO.F, aqueous solutions (93.4 %, U 235) cylinders
water-reflected.

Poison Control

Another method of criticality control is to design the processing plant
in such a way that neutron absorbers are present, intermingled with the fissile
material. It is necessary to guarantee the presence of these poisons in suffi-
cient amount to ensure that criticality cannot be reached in any vessel. A
particular example of this is to use hydrogen as the poison. If a solution of
any fissile material in a hydrogeneous solvent is made dilute enough, a critical
assembly cannot be formed in any circumstances. These conditions are
determined by a H/Pu ratio exceeding about 3,600 for plutonium solutions
or by a H/U 235 ratio exceeding about 2,400 for uranium solutions. If the
latter contain U 233 the amount of this isotope should be included with the
U 235 in forming the ratio. This method is in effect a  concentration ’ con-
trol and is usually known by that name.

* These figures and the graph Figure 17 are taken directly from a paper ® written

in 1949. Views on the precise values of the minimum critical parameters have been
modified since then and slightly smaller figures are customarily quoted.
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Poison control is valuable provided that the poison is known to be always
present. In particular where concentration control is applied, precautions
must be taken to ensure that the limiting concentration is never exceeded,
even momentarily, over any significant volume.

Other Factors

The example used to illustrate the arguments on geometrical control
and mass limitation (see page 44) used critical sizes for reflection by thick
water. It may happen exceptionally that a better reflector than thick water
is present — concrete is an example — and, if so, suitable allowance must
be made by imposing tighter restrictions. On the other hand, in many cases
it can be demonstrated that the only reflectors that can be present are less
effective than thick water. For instance, the only possible reflector may be
the thin walls of a tank. In such circumstances the restrictions can be relaxed.

In general, in order not to impose restrictions which are more onerous
than is essential, it is worthwhile examining the plant so as to exclude impos-
sible circumstances. The aim is to find the worst credible conditions and to
base the necessary criticality restrictions on these, though in doing this only
those situations should be rejected which can be proved impossible or so
unlikely that a tolerable risk is run in ignoring them.

CONCLUDING REMARKS

This paper has endeavoured to present the fundamentals of criticality
in such a way as to form an introduction to a deeper and fuller discussion.
The author is coascious that in no part is the treatment anywhere near com-
plete. Those sections which are to be taken up in later papers have been
discussed only briefly and superficially. Although such topics as measures
of criticality have been covered more fully, even here a large number of loose
ends have been left. This is in part because of the gaps in our knowledge of
a developing subject, but also because it was felt necessary to enforce some
volume limitation on this contribution which, unless firmly restricted, shows
a tendency to behave like neutrons in a supercritical system and grow with
no apparent limit.
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DISCUSSION

H. DorpcHIE, Belgium:

I was quite astonished at the result, that adding a scatterer which is non-
absorbent and non-moderator would increase the critical mass of a thin
slab. Would you not say that the statement could only be true for an under-
moderated core with a reflector which slows down the neutrons?

E.R. WooDcock :

It is certainly not true that the effect of a scatterer added to a slab depends
on the moderating reflector. This effect exists whatever the reflector is. There
may be a case where there is a different effect, that is where the core consists
of a slab of a large thickness. If one has a critical system with a very thick
slab, one may possibly get the opposite effect, but this has not been investi-
gated as yet.

G. BLASSER, Euratom:

I wonder how one obtains the formulae giving the density of plutonium
solutions as a function of the water content as found in Figure 10, “Assumed

?87 + 18x g/cm3 n?
109 + 18x

density of Pu(NO,),.xH,O is <

E.R. Woobcock:

These formulae, which give the overall densities of the plutonium solu-
tions, are found by knowing the density of the dry material on the case of the
plutonium oxide, and of Pu(NO;),.5H,O in the plutonium nitrate case,
which have been estimated at maximum crystal density, and just adding
water as a pure mechanical mixture. It was not necessary to try to tie them
up with any real experimental values because we have the density scaling
factor which enables any small correction in density to be made quite accu-
rately.

W. ScHOULLER, Eurochemic:

I should like to raise a question concerning Figure 15: “ Effect of Com-
posite Reflectors on Critical Mass ”, and particularly the curve No. II where
the critical mass for composite reflectors is shown to be smaller than the
critical mass for the individual reflectors. Has any attempt been made to
explain this effect and are there other examples where this effect has been
observed?

E.R. WooDcock :

I would like to pass this question over to Dr. Paxton. This is a result
which he has given in a recent paper. I know of no explanation: presumably
there is one, but I have not come across any other case in which this effect
has been observed.

H.C. PaxtoN, United States:

We have no verified explanation for this effect but we suspect that it
may be associated with a strong scattering resonance that nickel has at about
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16 keV. The effect was first demonstrated simply because a small sample
of nickel seemed to be surprisingly efficient just outside the core interface
in a uranium-reflected hydride system. Indeed, in adding a layer of nickel
within the uranium-reflected system, the critical mass decreased; if it is not
a scattering effect, I do not know what it could be.

J.L. SCHWENNESEN, United States:

Gentlemen, we have of course a very wide audience here, representing
not only specialists in the nuclear safety field, but also design engineers,
persons who are concerned with operational aspects, etc. Recognising
that the subject of fundamentals in this field is exceedingly difficult to discuss
anyway, I am wondering if there are any speakers who would perhaps char-
acterize the fundamentals a little differently or perhaps stress, from their
particular point of view, certain of Mr. Woodcock’s observations or emphasise
them differently.

H.C. PAXTON:

I might simply remark that surface multiplication is a beautiful concept.
One of the difficulties has been with the measurement problem : it is simply
that other types of multiplication are much easier to measure, and 1 think
that what Mr. Woodcock says should hopefully encourage more attempts
at measuring and computing surface multiplication. It is extremely useful.
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SURVEY OF THEORETICAL CALCULATION
METHODS

R.T. AckroyD and E.D. PENDLEBURY
United Kingdom Atomic Energy Authority

INTRODUCTION

In this survey of methods of calculation for critical sizes and masses
of isolated fissile assemblies, stress is laid on those simple methods which
have been found useful over a period of many years and continue to give
good service, and those advanced methods which are increasing in practical
importance with the growing power of digital machiries. The choice of a simple
or an advanced method for a particular problem demands some experience
if it is to be a wise one. One can get probably the best results for money
spent by a balanced application of simple and advanced methods according
to the following scheme:

a) Establish accurate critical sizes of the system for a few values of the
significant parameters;

b) Interpolate between the established points by a simple calculation
which may be based for some problems on the appropriate mathe-
matical model, and for other problems on perturbation theory.

The best way of establishing critical sizes for a few values of the signi-
ficant parameters is in principle the experimental one, but for a variety of
reasons experiment is seldom feasible for establishing all the points required.
Recourse to an advanced method should be made if the significant physics
of the problem is not well understood. Advanced methods require careful
preparation and can be misleading if good nuclear data are not available.
If the physics of the problem is well understood a simple method can some-
times be used with advantage, but there are pitfalls for the unwary.

In balancing the claims of simple and advanced methods it is well worth
remembering that in plants processing fissile material the physical state of a
potentially critical system may not be known with anything like the accuracy
usually met in the reactor field. Consequently, in assessing the criticality of
a vessel, a variety of potentially critical systems may have to be examined.
Extreme accuracy in the calculations is not called for. As long as the calcu-
lated critical sizes are slightly conservative, simple methods are good enough.
However, in the absence of suitable check experiments it would be most
unwise to rely on simple methods only, and advanced calculations are often
called for. Simple methods are considered to be those based on few-group
diffusion theory and age theory. Advanced methods, in principle, stem either
directly from transport theory or the Monte Carlo method, and their appli-
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cation is possible where there are good facilities for computing. Examples
from transport theory are the spherical harmonics and Carlson S, methods.
Multi-group diffusion is regarded as an advanced method for it requires,
in practice, the services of a digital computer.

Criticality problems for isolated vessels can be regarded as falling into
two classes: (i) spectral problems; and (ii) problems of shape.

A typical problem of class (i) would be to determine the critical size
of a water-reflected sphere of 60 9, uranium (U 235) oxide and paraffin wax
with an H/U 235 ratio of 3, since the emphasis here is on spectrum and not
on shape. The critical dimensions of a water-reflected tee-junction for a
dilute aqueous solution of highly enriched uranyl fluoride is an example of
the second class of problem. Some methods could be suitable for both types
of problem, e.g. the Monte Carlo method; others, such as the variational
methods and buckling conversions of diffusion theory, are very convenient
for dealing with changes of shape which involve only insignificant changes
in neutron spectra. The Carlson S, version of transport theory is an example
of an advanced method which can deal with problems of class (i), but is limited
for problems of class (ii) to spherical, finite and infinite circular cylindrical,
and slab systems.

Criticality problems on isolated systems can be classified also on the
basis of: (i) homogeneous systems; and (ii) heterogeneous systems.

Class (i) includes systems with cores of solid metal or solutions. Class (ii)
includes conventional lattices of fissile rods or sheets in a moderator, solu-
tions containing sludges, encrustations or severe gradients in the concentration
of fissile material. Most of the work on heterogeneous systems employs
diffusion theory. Originally, diffusion theory was chosen because of its sim-
plicity, and subsequently many experiments were fitted into the diffusion
treatment of lattices by judicious choice of constants. Consequently, there
are many practical reasons for adhering to this simple model for lattices.
In recent years the Monte Carlo method has been applied to lattice theory,
but this work is perhaps to be regarded as supplementing rather than supplant-
ing the earlier work on lattices.

In this review we are principally concerned with outlining the basic
methods used for criticality calculations, and not with the details of a method
when applied to a specific field. For example, we indicate how diffusion
theory is applied in lattice theory, but we refer the reader elsewhere for details
when there is a suitable review.

The two fundamental methods for criticality calculations are the Monte
Carlo method and the method of transport theory. The former is in prin-
ciple the more accurate of the two, since the intention in the calculation is
to mimic the actual situation in every detail. Since the method is a statistical
method, the answers obtained are only probable ones. The uncertainty in
the answer can be reduced to negligible proportions if one can put in the
numerical effort required. The numerical effort required can be reduced by
using certain statistical ¢ dodges °, but it may not be clear always that when
labour has been saved, unwarranted assumptions have not crept in. We
also consider the simplification of Monte Carlo calculations by use of matrix
algebra and the neutron traffic model. Provided good nuclear data are used,
and there are good computing facilities available, the Monte Carlo method
18 an excellent means of establishing basic data. The method has one serious
disadvantage which it shares with experimental methods (since the methods
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can be roughly regarded as experiments with numbers and neutrons respec-
tively), that the results obtained do not always shed much light on the phy-
sics of the problems considered. This disadvantage is not peculiar to the
Monte Carlo method; it is shared to some extent by most advanced methods.
An advanced method which does give considerable insight is the spherical
harmonics method of transport theory, but unfortunately this is not well
suited to machine methods of computation. Simple methods can be helpful
in understanding the physics of criticality problems, if sometimes it is only
in a negative way.

In the transport method the statistical fluctuations in the neutron popu-
lation of a system are ignored. This is a reasonable assumption for critical
systems. Transport theory can be formulated either as an integro-differential
equation, the Boltzmann equation, or in terms of integral equations. In the
sequel, we show how one of the approximate methods of diffusion theory
is obtained from transport theory, and particular stress is laid on the so-called
14 group or albedo method, as this attractive version of diffusion theory can
be very useful for some criticality calculations. Diffusion theory is usually
derived assuming that the linear dimensions of the system are large compared
with the neutron mean free path. We give an outline of a diffusion theory
for finite systems, and show by numerical comparison with Carlson S, and
Monte Carlo results that it can give in some problems significantly better
results than classical diffusion theory. In keeping with the policy of adding
a little spice to our review of established methods, we consider the problem
of checking the accuracy of advanced methods from an entirely new stand-
point, which employs the geometry of a function space appropriate to the
Boltzmann equation.

In the sequel we shall refer to a number of standard works and papers,
and, for convenience, we usually adopt the notation of the reference. Thus,
the notation in this paper is not consistent throughout.

The Boltzmann Equation of Transport Theory

If N(r, v, Q)dv dQ denotes the number of neutrons per unit volume at
the point with position vector r, with speeds in the range v to v 4- dv, and
directions lying in cones of solid angle 8€2 with axes parallel to the direction €2,
then the Boltzmann equation for a region V can be written (Davison (V):

vQ.grad N(r, v, Q) + va(v) N(r, v, )
:f / V RO N(r, vV Q) fr v, Q — v, Q)dv dY (1)
- source terms

In this equation « is the inverse mean free path and {3 the number of secondary
neutrons per unit path for neutrons of speed v. The integration on the right-
hand side of (1) is over all directions {2’ at position r, and all neutron speeds

4

V. The physical meaning of the kernel f(r;v,Q" —»v,Q) is as follows:
g flr; v, Q" - v, Q)dv dQ is the number of neutrons at r produced in the speed
range dv with directions in the cone of solid angle d€2 and axis {2, when a neu-

tron of speed v’ and direction ' undergoes a collision. The products of
such a collision (secondary neutrons) are in general fission neutrons, elasti-
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cally and inelastically scattered neutrons. The kernel f is in general repre-
sented as a sum of three kernels, one for each of three basic types of secondary
neutron produced as the result of fission, elastic and inelastic scattering.
The parameters « and [ can be expressed in terms of the microscopic cross
sections as follows.

Suppose there are » nuclei per unit volume, then:

a= n(o, + o, + o, + o6,) 2 ?)
B= ca= n(c, + 6;, -+ voy) |

where o,, 6,,, 6, and ¢, denote the cross sections for the elastic scattering,
inelastic scattering, fission and capture processes. The number of secondaries
per collision is ¢ and v is the number of neutrons emitted per fission.

For the three processes producing secondary neutrons the function f
takes the following forms for a homogeneous medium. In fission, the neu-
trons are emitted isotropically in the laboratory system, and f reduces to:

SO Q2 v, Q)= F(v)/4r (€)

where F(v) denotes the fission spectrum. Neutrons are also assumed to have
an isotropic distribution in the laboratory system after inelastic collisions, i.e.:

/ ’ — 1 5 3 y
f;'n(v » 9 s V:Q) - ZI-;C g(v 1') (4)

where g(v' - v)dv is the probability that a neutron of speed v is scattered
inelastically in the speed range v to v + db.

Since neutrons can be scattered anisotropically in an elastic collision,
and many of the simpler theories for calculating critical sizes are strictly
valid for isotropic scattering in the laboratory system, a correction factor is
applied to the cross section for elastic scattering. Subsequently, we shall
see how this correction factor is obtained.

If f,(n) is the angular distribution of the scattered neutrons, where p
is the cosine of the angle between {2 and (', then the correction factor for the
scattering cross section is:

1
] o d
j_ ] e fo(wdy,

i.e. the effective elastic scattering cross section o', is given in terms of o, the
cross section for elastic scattering by:

e, [l o / L) s)

o/

The effective cross section for both scattering processes, i.e. the transport
cross section, is then defined to be:

O = G; + Oin (6)

The expression for f{r; v/, Q" - v,Q), in the case of a homogeneous medium,
can be written:

: :g foff+pinfin+pefe; (7)

where p;, p,, and p, are the probabilities that a collision results in fission,
inelastic scattering, and elastic scattering.
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A Simple Form of the Integral Equation of Transport Theory
Instead of formulating transport theory in terms of the Boltzmann integro-
differential equation (1), it can be expressed in terms of integral equations.
The details can be found in Davison ). There is, however, a particularly
simple form of the integral equation approach to transport theory which it
is instructive to consider. If the neutrons are all of one speed, or the cross
sections are independent of energy, the neutron flux ®(r) at a point r satisfies
the integral equation: )
B(r) = ] oy ¢ L= gy
- 47 R ¢

— 2

reactor

where o is the inverse mean free path and c is the number of secondaries per
collision. It is assumed in (8) that the medium is homogeneous and scattering
is isotropic in the laboratory system. The extension of (8) to the case of a
core surrounded by a reflector is given by Davison @, Fuchs ¥ and Frankel
and Goldberg @. If the scattering is anisotropic, a first approximation is
to retain the functional form of (8) but to use a modified «. Instead of using
the scattering cross section to calculate «, one uses the transport cross section.

DirrusioN THEORY

To determine the critical size of a reactor with reasonable accuracy,
it is often essential to know the distribution of the neutrons in space and
energy. In diffusion theory the maxim ¢ divide and rule ’ is adopted. First
of all the migration of neutrons in space is considered, assuming that all the
neutrons have either the same speed or the cross sections are independent
of speed (Davison ‘'; Case, de Hoffman and Placzek ). This idealization
leads to one-group diffusion theory. Secondly, a determination is made of
the energy distribution of neutrons from a fission source which is uniformly
distributed over an infinite moderator and it is discussed in some detail by
Weinberg and Wigner ®, Glasstone and Edlund ?. Thirdly, the spatial
distribution of the neutrons, as a result of slowing down, is determined. One
approach leads to the Fermi age theory ¥ 7. The Fermi age treatment is
strictly applicable to slowing down in media other than those containing very
light nuclei. There is also a computational difficulty which has tended to
restrict the use of age theory to bare reactors. The difficulty arises because
the multiplying and slowing down properties of a reflector are, in general,
different from those of the reactor core. The neutron energy spectrum,
which is fairly uniform throughout a bare reactor, can change markedly in
the neighbourhood of a core-reflector interface. The computational difficulty
can be overcome if direct numerical methods are employed. These methods
(Mandl and Howlett ®®, Hurwitz and Ehrlich ) can be useful where there
are good computing facilities. The final stage in the development of diffu-
sion theory brings in the concept of many energy groups. In an m group
theory the slowing down of neutrons is accounted for by an approximate
method for which the energy range is divided into m discrete intervals or
‘groups . The neutrons in each group are regarded as diffusing without
energy loss until they have undergone a number of collisions which, on the
average, would decrease their energy so that they enter the next lower energy
group*. In discussing the slowing down of neutrons it is often convenient

* In a further generalization a neutron can enter any of the lower energy groups.
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to express the energy in a logarithmic, dimensionless form by using the quan-
tity lethargy or logarithmic energy decrement. Thus for example, if u, is the
width of the g lethargy interval, then the average number of collisions a
neutron requires to traverse the pt* interval is u /£ where £ is the average loga-
rithmic energy decrement per collision. Since the number of collisions per
second in the g group can be written as X, @ (r) at the point with position
vector r, if the neutron flux for the g* group is ®,(r) and X, is the average
scattering cross section for the gt group, the number of gt group neutrons
which become g -+ 1% group neutrons per second is:

T

2@ (r).

o 0(0)
Thus, the quantity X, £/u, can be shown to play the role of an absorption
cross section, as it gives the rate at which p* group neutrons are removed
to become neutrons of group p= 1. In this way the multi-group model of
diffusion theory, in principle, converts the general transport problem for
neutrons, with energy and spatial co-ordinates as independent variables,
into a system of coupled partial differential equations with the spatial co-
ordinates as the only independent variables.

One-Group Diffusion Theory

There are two well-known ways of developing a one-group diffusion
theory granted that the scattering is isotropic in the laboratory system, viz.
a physical approach and a mathematical treatment based on the integral
equation of transport theory. The first form is often called elementary diffu-
sion theory and the second is usually referred to as modified or infinite-medium
diffusion theory. If, as is sometimes true, the scattering is isotropic in the
centre of mass system, the assumption of isotropic scattering in the labora-
tory system is only a good approximation for heavy nuclei*. A correction
is sometimes made to elementary diffusion theory to allow for the scattering
being isotropic in the centre of mass system. The diffusion coefficient of the
elementary theory is divided by 1 — §,, where g, is the average cosine of the
scattering angle in the laboratory system. The correction factor is got ¢ ?
by comparing the elementary theory with a diffusion theory which is obtained
as a first approximation to the spherical harmonic form of the Boltzmann
equation, which is sometimes called the ‘ second form of Boltzmann’s equa-
tion ’ ® to distinguish it from the form (1). The correction factor is obtained
assuming that the medium is not a strong absorber.

One-group modified diffusion theory can be obtained by considering
solutions of the integral equation (8) when the region of integration extends
over the whole of space. The neutron flux @(r’) is expanded as a Taylor
series about the point r. Substituting the Taylor series in (8) and integrating
gives: 8
O= - (D + V2D/30% + VAD/S5at + ...... ) 9)
This equation is satisfied by:

V2D + k20 = 0 for a multiplying medium (10)

a V20 — p2® = 0 for an absorbing medium

*  For incident neutrons above 1 MeV, scattering by most nuclei is usually aniso-
tropic in the centre of mass system.
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provided
kjo = tan (k/B) | (11)
wlee= tanh (u/8)

For slightly multiplying media (/« a little greater than unity) and for slightly
absorbing media (8/a a little less than unity) the formulae (11) reduce to:

k2~ 30 —a) |
u? ~ 3o(a— ) | (12)

The approximate formulae (12) for k and ¢ can also be obtained by solving
the Boltzmann equation in the P, spherical harmonic approximation (see
page 80).

Davison @ has shown that the neutron current vector j(r) at any point r
in the infinite medium is given by:

j(r) = — D grad ®(r) (13)
where
D = (8 — a)/k? for a multiplying medium |

D = (¢« — p)/p.2 for an absorbing medium | (14)

For weakly absorbing and multiplying systems, (14) become approximately:
D = 1/3« (15)

It is reasonable to expect that the infinite medium equations can be used to
give fairly good results on the critical size and the neutron flux distribution
for reactors which are large compared with the mean free path. This intuitive
conclusion is confirmed by a rigorous analysis () based on the one-group
Boltzmann equation (1), which shows that the exact solution for the neutron
flux in a uniform isotropically-scattering medium can always be represented

in the form:

The ¢ asymptotic solution > @, (r) satisfies one of the infinite medium equa-
tions (10), and the transient term @, (r) is given by:

®,,(r) = 0(e ) a7

where d is the distance of the point from the nearest source or boundary.
Thus, if the dimensions of the region considered are large compared with
the mean free path, then ®,,(r) can be neglected in comparison with ®@,(r),
except in the neighbourhood of sources and boundaries. The modified diffu-
sion equations are solved for each region of the reactor. The solutions for
the separate regions are then matched by imposing boundary conditions
(to be discussed) at the interfaces of regions and at a bare surface. The result-
ing equations give rise to an eigenvalue problem for the critical size. The
requisite eigenvalue is distinguished from the others since it is the smallest,
and its associated eigenfunction is non-negative,

Boundary Conditions

Interfaces. To illustrate the boundary conditions that arise, consider

a simple reactor consisting of a weakly multiplying core surrounded by a

weakly absorbing reflector. In this case the approximate boundary conditions

_are (using suffixes ¢ and r to indicate core and reflector quantities respectively):
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D, =D, “
(

1 grad®, = : grad @, | (18)
o, o, !
These boundary conditions are a special from of Davison’s 2 boundary
conditions for modified diffusion theory. The same result as (18) is obtained
if the Boltzmann equation is solved tc the P, approximation (see page 80)
under the assumption that scattering is isotropic in the laboratory system.
If the scattering is not isotropic in the laboratory system the last member
of (18) can be replaced by:

D,--—“=D,—" (19)
where D, = 1/30,(1 — &)

Dr = 1/30(.7(1 '—ELT) !
and » is in a direction normal to the interface.

(20)

Bare surface. There are two well-known approximate formulations of
the boundary condition for a bare surface (convex), viz. that no neutrons
cross the surface inwards. They are the ‘ extrapolated end point ’ and the
¢ linear extrapolation distance * conditions. The first states that the function
representing the flux in the reactor should vanish at a distance d, in free space
from the bare surface. Over a wide range of B/a, i.e. ¢, the quantity B dy in
Table 1 is almost constant.

Tap:e 1
c Bd,
0 1.000
0.5 0.721
1.0 0.710
3.0 0.720
oc 0.750

The second form of the boundary condition states that at the boundary
the ratio of the flux to the normal derivative of the flux is a constant, i.e.:

‘. aQ)é are surfjace —— ——
{m/b,"‘ bare suface = — d 1)

The extrapolation distance o can be shown from transport theory (> 5 6 D
to be given by the semi-empirical result 0.710 %,, where 2, is the transport
mean free path.

Multi-Group Diffusion Theory

The P, approximation of the multi-group version of the spherical har-
monics form of the Boltzmann equation (1) has been used by Mandl (10, 11)
to obtain a simple multi-group diffusion theory. Assuming that the scattering
Is isotropic in the laboratory system, the multi-group equations for spherical
systems are of the form:

1 a 3
— o TR0, ®, = r Xy, 1F, Y by (22)
9 g I'g

,

54



for the flux @, in the gt group, for which the inverse mean free path is a,.
In (22) v,, is the cross section per unit volume for transfer from group g’
to group g by scattering, and v,, is the cross section per unit volume for the
neutrons scattered in this group to remain in this group. The number of
fission neutrons liberated in a particular energy group g is

F”E o, Dy

where «,, is the cross section per unit volume for neutrons in group g and
F, is the number of neutrons in the fission spectrum which are emitted in that
group.

Alternatively the multi-group equations are derived directly from physi-
cal considerations. The same assumptions are made as regards the leakage
and absorption terms in the continuity equation for each energy group as
are used in deriving one-group diffusion theory. The contribution of fission
neutrons to the sources for each energy group can be expressed in a similar
way to that used in (22). In each continuity equation excepting that for the
lowest energy group there is also a sink due to the removal of neutrons by
slowing down.

There is also for each group, excepting the highest, a source term repre-
senting the influx of those neutrons to the group which have been slowed
down from high-energy groups. The strength of the slowing down sources
are calculated on the lines indicated in the introductory section on diffusion
theory. In calculating the leakage term the diffusion coefficient has to be
corrected for anisotropic scattering if this is significant.

The simplest form of multi-group diffusion theory is the well-known
two-group theory, which can be very useful, despite its simplicity, if carefully
applied. For a reactor with a reflector, the two-group diffusion equations
often take the form (7:

Core
D, v, — %, ®,, + kX, D,, = 0 for fast neutrons ) (23)
D, VD, —%,®, + 2,0, = 0 for thermal neutrons
Reflector
D, v:®,, —Z,,D,, — 0 for fast neutrons I (24)

D, VP, —X,d, + 3, ®, =0 for thermal neutrons !

For (23) and (24), fast neutron absorption has been neglected and X;, and
%,, are the slowing down cross sections for fast neutrons. The absorption
cross sections for thermal neutrons are % ,, and X ,, for the core and reflector
respectively. The number of fast neutrons produced by fission is kX, D ,,
per cm?® pzr second. Resonance capture of neutrons can be allowed for by
including ths resonance escape probability in the calculation of k. If the
reflector is infinite, the boundary conditions are simply:

(ch = (I)lr \
2¢ ° D,, /
O o0
Dy~ = Dy, 5 (25)
0D,, 00,, \
Dy, b: = D,, b: i
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at the core reflector interface. Solutions of (23) are obtained ( by expressing
®,, and ®,, as linear combinations of the solutions of:
Vid 4 B2D = 0 (26)
where B? satisfies
(14 L2B%) (1 + L2B%) =k

(
ch ch ( (27)
L= Ezc Li B ‘\:‘lc S

These linear combinations involve coupling coefficients, usually denoted
by S, and S, for the core. This conventional two-group analysis has been
described in some detail because there is an almost trivial modification of
it 12 which is very useful. The above two-group analysis is suitable only
for well-moderated systems because it neglects fission in the fast neutron
group. If this omission is rectified by including a term (4 — 1)Z{* in the
fast group equation of (23), the buckling relation (27) becomes:

(4 LB+ LB =) —k
e | (28)

where T=(ny— 1)<
“~i1e

The parameter T is a measure of the hardness of the neutron spectrum; it is
about 0.004 in a well-thermalized core (note that T = 0 yields the conven-
tional two-group equations) and about 1,000 in a pure metal system. The
coupling coefficients are almost the scme as those of conventional theory;
they are:

PEy, § = P (29)

where p is the resonance escape probability. The coefficient S, is difficult
to calculate accurately from (29) for other than well-thermalized systems,
because its numerator and denominator become very small. It is better to

use:
W

S, = plo :
D
] _zfz ( -
where Q= —‘]: - — (e + 1—DILE + (1—7)L?) S

As the spectrum becomes harder the thermal group parameters become
insignificant in Thornton’s analysis, so that the fact that they are ill-defined
is then unimportant. In the case of a solid metal core,

T > ny,— 1, so that t appears as -Té yie (g —1) .
L, Dye s

2, has then no effect on the analysis. The value of Thornton’s method is

that it provides a simple bridge between conventional two-group diffusion

theory for well-thermalized systems and the albedo method, which uses in

its simplest form one group in the core and two groups in the reflector, for

dealing with fast cores and moderating reflectors.

* v, and subsequently 7,, are used for the value of % for fast and thermal neutrons
respectively.
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Before discussing albedo or ¢ one-and-a-half group’ methods, there
are two other simple applications of diffusion theory which are of very consi-
derable importance; Buckling Conversions and Lattice Theory. The latter
is so well known as a part of reactor theory that we refer the reader who is
interested in criticality problems involving lattices to the standard works ¢ ?
and reviews (13, 14,

Buckling Conversions

There is an important result for bare reactors which is often useful when
problems of class (ii) are considered. The conditions for the result to be
valid are discussed in detail by Weinberg and Wigner . The first funda-
mental theorem of reactor theory can be stated as follows.

The stationary neutron distribution @(r, E) in a critical bare reactor is
separable in space and energy:

(r, E) = q(E){(r) @31
the spatial distribution (r) is the fundamental solution of the wave equation:
V2(r) + B¥(r) = 0 (32)

that is, the solution which is positive throughout the reactor and vanishes
on the extrapolated boundary.

The theorem simplifies the calculation of the critical sizes of bare reactors
with shapes for which the wave equation can be solved either by the method
of separation of variables or by the variational methods described on page 69.
Furthermore, if one makes use of the concept of reflector savings ¢ 7, changes
in the critical size of reflected reactors with changes in shape are easily com-
puted. The accuracy of the method has been discussed by Callihan (19,

Albedo Methods

The albedo method is a simple means of calculating sizes of small fast
cores with moderating reflectors which was developed in the first place for
fairly large cores, but which gives surprisingly good results for small cores.
The theory is tantalizingly simple, and the method in its variational form de-
mands no more than the solution of a simple quadratic equation for the deter-
mination of critical size.

As a rule, systems calculated to be critical by the simplest form of albedo
method with the aid of diffusion theory are actually subcritical. A modi-
fication 19 of the method, however, calculates systems as critical when they
are actually supercritical. We will content ourselves here with the form
of the albedo method which often gives underestimates for critical size.

The albedo method for fast cores with moderating reflectors. In the sim-
plest form of the albedo method, there are assumed to be fast and thermal
groups of neutrons in the moderating reflector and a fast group in the core.
The core and reflector are regarded as separated by an infinitesimally thin
shell of core material which is black to thermal neutrons. For every thermal
neutron absorbed on striking the shell, » fast neutrons are produced, half
of which enter the core and half the reflector.

The albedo A for the core is defined as the ratio of the fast neutron current
J7. entering the core to the fast neutron current J3; leaving the core, i.e.:

A= Jl7 (33)
feldr
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" The thin shell and the reflector can be treated together with advantage by
introducing the concept of the effective albedo for the reflector A*. The
effective albedo is defined as the ratio of the fast neutron current J;, returning
to the core from the union of the shell and reflector to the fast neutron current
J;, entering the union from the core, i.e.:

A* = T35 (34)
If J}, is the fast neutron current entering the reflector from the shell and J7;

is the fast neutron current returning to the shell from the reflector, then u,
the probability of a fast neutron entering the reflector to return as a fast neu-

tron, is given by:
=Tl (35)

Furthermore, if J;; is the thermal neutron current returning to the shell from
the reflector, then p*, the probability of a fast neutron entering the reflector
to return as a thermal neutron, is:

wr =I5 (36)
Explicit expressions for y. and p* in terms of reflector dimensions and compo-
sition can be obtained if it is borne in mind that J};, the thermal neutron cur-
rent entering the reflector, is zero, i.e.:
I: =0 (37

The effective albedo A* can now be expressed in terms of @, p* and 7 by
considering the neutron multiplication in the shell. For the outward-bound
stream of neutrons across the shell,

Vo= Jnu+ 4l (38)
and for the inward-bound stream,
Voo = I + d0d5r 39)
These equations give, with the definitions of A*, p. and p*:
A* = (p + qp/(1 — np*) (40)

The criticality condition for the albedo method is given by equating
corresponding fast currents for the core and the union, which leads to the
condition:

A = A* 41

The condition for criticality that the albedo for the core should equal
the effective albedo of the reflector has been derived without specifying the
laws for neutron migration in the core and the reflector. The laws chosen
for neutron migration are in keeping with the albedo boundary conditions
in that they are simple and reasonably accurate. For large cores, ordinary
diffusion theory is assumed to hold for the core and the reflector, whereas
for small cores modified diffusion theory is used for the core and ordinary
diffusion theory for the reflector.

The fast flux ¢, in the core is assumed to satisfy:

Vo + 22y =0 (42)
The fast flux ¢ and the thermal flux 0 in the reflector are taken as obeying
V) —p% =0 (43)

and
V0 — 02+ 0% =0 (44)
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For the present the parameters A% 0% w? and 6% may be taken as given. Their
expression in terms of the standard parameters of modified and ordinary
diffusion theory is deferred until applications are considered.

The current ratios of (33), (35) and (36) can be written for both modified
and ordinary diffusion theory as:

i ang o\ [y g O ‘s
A= (to+ 20,0 [(0o—20, %)

8

- <¢ + 24, 2—,‘5) /<¢ 2, g%> , 45)

20\ //, oY
*= 04+ 24, = —2d, =
= (0 2) flo-)

where S is the surface of the core, and the d’s are constants which are related
to diffusion coefficients. The boundary condition (37) becomes:

P4

(e 24, °_9> —0 (46)
on
Granted the nuclear parameters d, the equations (40), (41), (45) and (46)
may be used to calculate the critical size. For spheres, cylinders and slabs p,
p* are given in Table IT below. In preparing the table, ordinary diffusion
theory has been assumed to hold for the reflector, i.e.:
L(’J =3 17 Lsp = l: 62 = f/lth2 (47)
where L is the diffusion length for thermal neutrons in the reflector;
L, is the slowing down length for the reflector;
l; is the fast mean free path in the reflector;
1, is the thermal mean free path in the reflector.
For the core, the Laplacian 22 is given according to modified diffusion
theory by:
Mo = tan (A/B) (48)
where a is the inverse mean free path of neutrons in the core and B is the
mean number of secondaries produced per unit path.

TaBLE II. u, u* AND A FOR SPHERES, CYLINDERS AND SLABS

" w A
o |1-—2d(pa+1)/a 4rydg*/r, a-+2d,(ra cot \a—1)
[
<
Sl1+2dpa+1)/a| (pt+w)]l +2dpa+1)/al [1 +2d(wa+1)/a] (a—2d,/(ha cot ra—1)
K (Pa) y 5 Ki(wa) Kl(Pa) Ji(Ra)
1—24, = =t 2 o2 G _ il i
g7 RGea| R\ O Kea) P RaGed) ' =235
E /
™
6) Ki(pa)|, , K(pa) Ki(wa) Ji(Xa)
1+2dp —2P2(@2—p?)( 14-2 - 1 584, e €
20 Row| @ PN 12 6o )\ T2 K wa) k24 3,0
r 2
2 42 dyp?
=l 1—2dp rs 1 — 2d,\tan 2a
1+ 2d,p (e + @ ( + 2d,p) (I + 2d,) 1 + 2d,xtan 2a
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In the table, a denotes either the radius or half-thickness and the d’s
are coefficients given by:

1,
I'l—?d;—l /
. ]tH 2
=34 TG x 07 \ 49
1
r3;3a0;21

As an illustration of the use of the albedo method, consider the following
calculation for the critical size of a water-reflected sphere of U 235 metal.
The nuclear parameters for the core and reflector are given in Table 1II below.
The parameters for the reflector are fairly standard. The parameters for the
core are based on averages over the fission spectrum.

TasLe 11l. NUCLEAR PARAMETERS USED IN ILLUSTRATION
OF ALBEDO METHOD

Ls(em) L(cm) I:{em) li(em)
Water reflector ...................... 551 2.88 3.26 0.55
Graphite reflector .................... 20.00 50.00 3.60 2.40
COTe oottt e osc = 5.85 barns o = 0.3465

o; = 1.31 barns B = 0.4294

c. = 0.15 barns

The calculated critical radius is 5.88 cm, which gives a calculated critical
mass of 16 kg for an infinite water reflector. This is a safe answer and not
too conservative considering the simplicity of the method, the experimental
figure being not more than 24.7 kg. At this stage it is pertinent to look for
possible sources of the discrepancy between theory and experiment within
the simple structure of the albedo method.

If the core parameters in Table III are used in calculating the critical
mass of a bare sphere of metallic U 235, the albedo method gives, on putting
w and p** to zero, a figure of 35.25 kg. The experimental critical mass for
a bare sphere is 52 kg. This suggests that the nuclear parameters of Table 111
for the fast group in the core may be inappropriate for the albedo method.
This possibility is supported by the following calculation. Given the experi-
mental figure for the critical radius of a bare sphere of metallic U 235, one
can calculate by the albedo method the requisite Laplacian A2 for agreement
between theory and experiment. Since A? is defined in terms of « (the inverse
mean free path of neutrons in the core), and B (the mean number of secondaries
produced per unit path), it is the same for all reactors of the same composition
whether they are bare or reflected. On using the Laplacian derived from the
experimental value for the critical radius of a bare sphere of metallic U 235,
the albedo method gives critical masses of 22.2 kg and 34.8 kg for unplated

* For the cadmium-plated sphere u* is taken to be zero.
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and cadmium-plated* spheres of metallic uranium with water reflectors,
whereas the experimental figures are 24.7 kg and 35 kg. Agreement between
experiment and the albedo method is now fairly good.

Enough has perhaps been said for the present in outlining a useful method
for obtaining the Laplacian. A detailed comparison of the predictions of
the albedo method with experiment is given later for some U 235 and Pu 239
cores in the forms of cylinders, spheres and slabs (cadmium-plated and unpla-
ted) for reflectors of water, graphite and beryllium.

Multi-group version of the albedo method. The accuracy of the albedo
method can be improved by taking more energy groups in the core and the
reflector than are used in the simple albedo method. In one version 47 of
the albedo method there are two groups in the core and four groups in the
reflector. Coupling of the groups due to fission and the slowing down of
neutrons are indicated in Figure 1 by heavy black and white arrows respectively.
The thin shell on the surface of the core is transparent to all fast neutrons,
which are contained in groups 0 and 1, but is black to the intermediate and
thermal neutrons occupying groups 2 and 3. Neutrons in groups 2 and 3
on being absorbed by the shell produce fast neutrons, and the yields per
neutron absorbed are 7, and 7, for groups 2 and 3. The groups 0 and 1 are
assumed to span the fission spectrum in such a way that a fraction p of fission
neutrons are born in group 0. The assumption is made that the remaining
fraction of the fission neutrons are, for practical purposes, born in group 1.
The diffusion equations and boundary conditions for the multi-group albedo
method are shown in Figure 1. The suffices ¢, r, u stand for the core, reflector

and the union of the shell and reflector respectively. In the core P PE UM
represents the coupling due to fission of group 1 into group 0. Group 0 is
coupled into 1 through the fission term (1 —2)7\(2, Yy and the slowing down
term v2; ¢y, The coupling between energy groups in the reflector should
be clear from the diagram. The coefficients in the core equations can be
calculated either on the modified or two-group diffusion theory. The distri-
bution of the yields of fission neutrons, which are produced in the shell by
neutrons of groups 2 and 3 from the reflector, is indicated in the diagram.
Note that no neutrons in groups 2 and 3 enter the reflector from the shell
since the shell is assumed to be a perfect absorber for neutrons in these groups.

Regarding the shell and reflector as a black box with inputs Jg, and
I} and outputs J5, and J7,, one can write: '

I = A*)? ‘ (50)
where J7 denotes the column vector with elements (J, J3;) and J} is the
column vector with elements (J§,, Ji,,). The form of the matrix A* will be
explained later. The matrix operator A* will be called the effective albedo
for the reflector.

For the core regarded as a black box one can write:

I =AJ (51)
where J; denotes the column vector with elements (J;, J,;) and J; is the
column vector with elements (J;,, J5;). The form of the matrix A will be

explained later. The matrix operator A will be called the albedo for the core.
Note that the inverse of A gives the surface multiplication matrix operator.

*  For the cadmium-plated sphere u* is taken to be zero.
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Figure 1. Multigroup version of the Albedo Method.

The critical condition occurs when J* = J* and J — J, which gives
A = A* as the condition for criticality.

If J;" is the column vector (J5,, J3;), and J*. is the column vector (J5,, J3,)
and J;" is the column vector (Ji, J{,)*, then the behaviour of the reflector can
be expressed by:

J =M Jf )
g (52)
J*7 = M*J} )
where M and M* are 2 x 2 matrices whose coefficients depend upon the

reflecting material. The shell equations can be simply expressed in the matrix
form:

=3+

e —

and (53)
e Rt
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TasLe IV. COMPARISON OF ALBEDO METHODS WITH EXPERIMENTAL RESULTS

U 235 Pu 239
Critical Radius or Semi-Thickness (cm) Critical Radius or Semi-Thickness (cm)
Assembly Calculated Calculated
Simple Multi-group Experimental Monte Carlo Simple Multi-group Experimental
Albedo Albedo Albedo Albedo
Bare sphere ........ 8.7* 8.33 8.7 6.26% 6.69 6.26
eylinder..ovevimis 6.31 6.24 622 5710 4.48 4.45 A
slab ...l 3.67 A 03.05 3.057) 3.285 2.47 2.46 A
Water-reflected:
sphere ........... 6.56 6.96 6.79 4.85 4.85 4.95
cylinder .......... 3.88 3.87 3.68 4.06 7 2.73 2.89 A
slab ............. 0.91 A 095 0930 0.835 0.49 iy Py
Water - reflected Cd -
plated:
7o) [ 7.62 A 7.63 5:59 A 5.33
cylinder .......... 4.84 A A 3.5 A A
slab owsasmees 2.13 A 1.28 A A
Graphite-reflected :
sphere 5.85 6.81 6.12 4.47 5.12 4.44
cylinder 2360 3.35 2.92 1.74$ 2.54 A
slab 0.6 A 0.63 0.38 A Py
Graphite-reflected Cd-|
plated:
sphere zvsawvaves 6.45 A 4.88 A A
CYLNAET v scososmimsmpsnin 3.6 A 2.55 A A
slab wyvvineaisa 0.74 A L 0.40 A A

* Tied to experimental bare mass.

A Not available.

{ The radius here is sufficiently small for the standard boundary condition of the albedo method to require modification. 1If the
factor 0.71 is replaced by 0.94 the critical radius is 2.41 cm.
o Guided extrapolation of experiments.

Experimental values have been taken from a report by Paxton1®),

[J Experimental values (private communication) Paxton?,

The Monte Carlo results are from Woodcock.




where the 2 x 2 matrices P and H are given by:

& ? 0
P = y3 54
[(l —p) 0] L

e R N3
H= [0 0] (55)

If unity is not an eigenvalue of PH M*/2 one can eliminate J;, J,” and J*, from
the equations (52) and (53); comparing the result with (50) gives:
= |

A* = <M + PTH M*> <1 - 1125{- M*> (56)

where 1 is the unit matrix.

Some results of simple and multi-group albedo calculations are compared
in Table IV with the experimental results (where known) for spheres, cylinders
and slabs of uranium and plutonium with water and graphite reflectors.
Further details are given by Ackroyd and Ball 8. These results suggest
that the use of diffusion theory in conjunction with suitably chosen mathe-
matical models can give estimates of the critical size of fast systems with
moderating reflectors rather better than is commonly supposed. The albedo
methods are often useful for checking and interpolation work, and they are
particularly useful for interaction calculations since they are simple and have
a fair accuracy.

Finite Medium Theory

Although classical diffusion theory has been justified only for large
systems it gives surprisingly good results for the critical size of some fairly
small systems. Of course, flux plots obtained by diffusion theory are sometimes
significantly in error near interfaces of regions, since the flux near a region
can be shown to have two components: the infinite medium solution of diffusion
theory, i.e. modified diffusion theory; and a transient term which dies out in a
distance from the interface of a few mean free paths. The great attactions
of diffusion theory are its mathematical simplicity and its ability, if skilfully
used, to give good answers well outside its operated range of validity. Apart
from diffusion theory the only method that has been developed in detail for
systems of awkward shape is the Monte Carlo method (see page 92), which
unfortunately requires lengthy computations.

A renewed attempt has been made recently by Ackroyd et al (18, 2L, 22) to
extend the justifiable range of diffusion theory by taking into account: (a) the
size of the system; and (b) the effects of interfaces. It is true that the effect
(b) has been allowed for in a mathematical way by the well-known Serber-
Wilson method ), but this method violates the physical fact that the neutron
density is continuous at an interface. The method, moreover, assumes that
apart from the discontinuity of the flux at interfaces, the flux is given within
the regions by the infinite medium solution, i.e. there is no consideration of
fine detail in the flux behaviour at interfaces. The limitation of the Serber-
Wilson method is that it is restricted to spherical systems.

In finite medium theory, which applies at present to spherical, slab and
finite cylindrical systems, the system is divided into a number of domains
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which may be greater than, equal to or less than the number of physical
regions. The simplest case arises when each domain corresponds to a physical
region. Boundary transients can be treated by assigning two domains to
each region; one to the central part of the region, the other to the
neighbourhood of the surface of the region. A number of small regions can
be homogenised by assigning one domain to cover all the regions. The method
is outlined for one-group systems, and the extension of the method to two-
group systems is then sketched.

For each domain V,, of a one-group system there is assigned a Laplacian
ard diffusion coefficient D, and a coefficient B,. The inverse mean free path
and number of secondaries per collision are denoted by «, and ¢, respectively.
The values given to «, and ¢, are those appropriate to the material in V,
(if a domain extends over more than one region, then o, and ¢, vary with the
composition of V,). In V, the neutron density is assumed to satisfy an
equation of the form, either
Vi 4+ an=0 ’
or - (57)
Vin—uin =0 \

The neutron density and the neutron current are assumed to be continuous
at the interfaces of V,. The outward and inward currents are defined only
at the interfaces, by the expressions of the form:

Vg, Dioon
J; ——v’.Bkn ) ou
‘ \ (58)
~ D, on |
Jk~v«’Bkn—}—»»2~- al\ !

where u is the co-ordinate in the direction of the positive normal to the inter-
face. The component of the angular neutron density for a point on an interface,
and for the direction of the inward normal at that point, is assumed to be
given in terms of the inward current, by an expression which is satisfied exactly
if the angular neutron density is isotropic at the point for those directions
inwards to the interface.

Imposing the conditions that:

i) The neutron density, according to finite medium theory, satisfies
at the centre the integral equation of transport theory for the neutron
density;

ii) The finite medium expression for the current at the centre satisfies
the integral relation of transport theory;

iii) The net production of neutrons in V, equals the net loss across
the interfaces;

gives: i
B, = (59)
D; = o, — DA} or ol — cug (60)

and formulae for &, and g, in terms of «,, ¢, and the size of V,. The formula
(60) is of the same form as that obtained by Davison ® but D,, in (60) depends
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on 2, (or y,), and hence is dependent on the size of the system. When the
region V,, becomes large the formulae of finite medium theory reduce to those
of modified diffusion theory. Typical formulae for the Laplacians are given

in Table V.

TasLe V. LAPLACIANS ACCORDING TO FINITE MEDIUM THEORY

Multiplying sphere
of radius a, inverse
mean free path o,
secondaries per col-
lision ¢, > |

Infinite absorbing
half - space inverse
mean free path o,
secondaries per col-
lision ¢,

Multiplying slab of
thickness 2¢ inverse
mean free path x,,
and secondaries per

System Laplacian
Absorbing sphere| Laplacian p, given by
of radius a, inverse
mean free path og,|| _ ,—gq, smh toas [ 142 oo —J,) o %l — )cosh oa (
secondaries per col- gxoa, uga, u.;a, L )
lision ¢, < 1 B N \
oy + =
oo (2 22) ] e ] |
s
if op >
( si 3 —N\ _
1 = e~ o Sinlt el 142 %(C“., ) {2 %(c"q 1) cosh (ea,
Hody ol / 01
o Egai(pe — o) ; — E; ‘ — ay( + 9‘0))'
2t ( S
if @y > .

Laplacian A, given by

7~
1 == 2% | tan- "\ [ lm I:,,(ot0 + ]ln)a,| l-I
o J
sin Aay (1 —2 (“qzr,!))
4 e Aoty \ Aa,
Cos hoa; (e, — 1)
holy Ao
Laplacian y, given by
o < O
[ = %0 g (%t b
24, % tho
‘lt !
X e 00 ; {
%y¢y | enmecos hwdow = —; 5 jeal(oy cos Ayt + Ay sin Ayt)—ay
o024y |
Jo

collision ¢,

There is a close analogy between the formulae of finite medium theory

and modified diffusion theory for spherical and slab systems.

For cylindrical

systems the formulae for the Laplacians in finite medium theory involve
indefinite integrals of K(#) (a modified Bessel function of the second kind)
which obscure the drawing of comparisons with the formulae for Laplacians
in modified diffusion theory.

A comparison of modified and finite medium theory is made in Table VI.
Checks for assessing the accuracy of the diffusion theory have been made
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by the Carlson S, transport programme and by a Monte Carlo calculation.

Table VI indicates that for both multiplying systems and absorbing
systems in the form of spheres, one-group finite medium diffusion theory
is better than modified or infinite medium diffusion theory. Figure 2 com-
pares flux plots, obtained by Carlson S,, classical and finite medium diffusion
calculations, for the reflected sphere of Table VI

TasLe VI. COMPARISON OF ONE-GROUP CALCULATIONS
Critical Systems
Modified Diffusion | Size of Core (c¢m) 1
System Theory Finite Medium %:;rs]ggorsl“
(c.p. Davison 1) Theory )
7.98 7.94
Bare sphere U 235 (Davison’s extra- | (No extrapolation 7.96
polation length used)| length required)
L ; . 5.66
Bare infinite cylinder 5.72 (No extrapolation 5.59
U 235 length required)
Sphere of U 235 with
natural uranium 6.29 5.76 5.83
infinite reflector
Slab of U 235 with
natural uranium 1.08 1.05 1.00
infinite reflector

Sub-Critical Systems

Spheres of natural
uranium with iso-
tropic surface Escapes/Entries
source of thermal
neutrons
Radius of Sphere Monte Carlo
Modified Diffusion Finite Medium (4,000 sample)
Total Mean Theory Theory -+ Standard
cm Free Paths Deviation
3.35 2.43 0.247 0.346 0.354 4 0.007
0.76 0.55 0.699 0.719 0.741 + 0.006
0.38 | 0.275 0.835 0.841 0.898 + 0.004

In the two-group version of finite medium theory the assumptions made
are similar to those used in the one-group version. If the two-group equa-
tions for the neutron densities in a region V, are written in the form:

V2, + byypny + byapna = 0 for neutrons of speed vy (
(61)
ﬂ

A2ny + boginy + bygny = 0 for neutrons of speed v,
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the diffusion coefficients for groups 1 and 2 are given by:

Dy = aglcrnr — D/bug == vadtarCion/vibyos [ (62)

Dy = oty Canr — 1)/baor = v1%13Co11/Vabors \

respectively, where o, is the inverse mean free path for group I, ¢, the
secondaries of group 1 per collision in group 1, ¢;,, the secondaries in group 1
per collision in group 2, etc. The expressions for neutron currents are of
the same form as (58), and the coefficient of the neutron density term can
be shown to be a quarter. Equation (62) shows that the parameters of the
diffusion theory are determined when expressions have been found for by,
and by, in terms of the inverse mean free paths and yields for each energy
group. They can be found in the same way as the one-group Laplacians
are determined; the procedure is an iterative instead of a direct one, because
an a priori assumption has to be made about the functional form of the group
transfer terms in (61). A simpler procedure, which may be adequate, is to
calculate the by, and b,,, as if they were Laplacians of distinct one-group
systems.

VARIATIONAL METHODS

Variational methods have been used mainly for problems on energy-
independent or one-group systems, because the operators for such systems
are self-adjoint and consequently the associated variational principles are
simple to apply. The restriction of variational methods to mainly one-group
problems should not be taken to imply that the results obtained are of aca-
demic significance only. The value of variational methods perhaps may be
appreciated the more by considering some of the results that have been
obtained. The field of application for variational methods can be divided
roughly as follows:

a) The derivation of approximate boundary conditions from transport

theory;

b) The determination of the effects of changes of shape on critical size;

¢) The checking of the accuracy of some numerical methods.

Variational Principles for Transport Theory

There are two kinds of problems which can be treated by variational
methods: (i) critical size problems associated with the homogeneous form of
the transport equation, and (ii) those governed by the inhomogeneous form
of the transport equation.

Critical size problems. The one-group integral equation for the neutron
density at r can be written 1:

v o a(re(r e " ) n(y ;
n(r) = -I- / o1 )elr) ,,27&) dV (63)
VoA lr—1 1
where ¢(r) is the yield of secondary neutrons per primary neutron at r;
*a(r) is the inverse mean free path at r;
©(r, r') is the optical distance between - and '

v is a variable parameter.
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If the system is critical, y,, the lowest eigenvalue of (63), must be unity.
The variational principle for (63) states that the maximum value of the func-
tional : '

J 4 / D)V e VAV
I(7) = - B S (64)
a7 [ ape()i(o)? dv

vV

is 1/y,. The maximum value is attained by the everywhere-positive function
n(r) from amongst all admissible trial functions 7(r). The valuable features
of the variational principle are:
i) A rough trial function can yield a quite accurate value of 1/y,;
if) 1/y, is always underestimated by any trial function, excepting the
exact solution.

Pryce (33 in determining the critical size of a bare homogeneous sphere
used the trial function:
i(r) = 1— gr? (65)

where r denotes the radial co-ordinate and ¢ is a parameter which is chosen
to maximize the functional (64). Davison and Fuchs (29 have fitted the
formula:
1.814 T
Ba == 4 0.16 V1 —a/f —0.697 (66)
V1— o/B

to Pryce’s numerical results over the range 1.5 < B/x << 0. Fuchs ® has
calculated the critical radius of a homogeneous sphere embedded in an infinite
reflector, which is a pure scatterer and has the same total mean free path as
the core. The trial function used is given by (65) in the core, and by the
diffusion theory solution:

A(p) = A+ Br (67)

in the reflector. The boundary condition that 7(r) is continuous at r = a,
the core reflector interface, is imposed. Thus, only two of the three para-
meters p, A and B can be chosen to maximize (64). Davison and Fuchs (24
give the formula:

0.907

T e e e 0370 1 — 68

Vi 03T — ) (68)
for the critical radius a. As B/« 1 the formula (68) agrees with diffusion
theory; and as f/o —~co (i.e. the multiplication is very large and hence the
reflector has a negligible effect on the critical size) the formula agrees with
Peierls’ (25) result for a bare sphere. The problem solved by Fuchs highlights
the principal difficulties in applying the variational principle (64). The inte-
grations involved in (64) are very difficult to perform unless the total mean
free path is constant throughout the volume of the reactor. The choice of
the trial functions 7(r) is severely restricted for the same reason. Never-
theless, the solutions which have been obtained are useful for checking other
methods. Frankel and Nelson 4? give variational calculations for the critical
size of the bare slab, cube and cylinder.

Ba
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Variational Principle for the Inhomogeneous Equation

The integral equation of transport theory, for the neutron density n(r)
in the presence of sources s(r) in the region V, can be written:

O((I;’ )C(':,,)'l(ﬁl) } ) e~ (rr')

n(r) :v/ o 4t s(g')$ [T:FTZ dv’ (69)

The ypariational principle for (69) can be stated thus: if 7(r) is a trial function
and the finite system is not supercritical, the functional

1) — /Vl [ i) <3‘(C'li—§§)"(‘r")

—1 (rr’ %Y
" 2s<r;')> e]r_*“r’,]ﬂv [ —ae@ie) ] dv (70)

has an upper bound equal to:

/‘ § oc(z)c(c,)ngi)rsi(rj)ej”‘ﬁi’d)/'t{Y a1
JvJv =t

and J(7) furnishes a fair approximation to (71) even for relatively poor trial
functions. An extension of this principle to infinite systems is discussed by
Davison V), Marshak “D used the extended principle to determine the
linear extrapolation length of a black sphere. Kushneriuk and McKay (42
have used a similar principle to determine the linear extrapolation length for
composite cylindrical control rods. This work has been extended by B. Mon-
tagnini ¥® who has made some useful simplifications in the analysis. Despite
these efforts, the difficulty of carrying out the integrations involved prevents
the general use of the variational method in solving the inhomogeneous equa-
tion. The variational method for solving the integral equation of transport
theory is successful only when the system is fairly simple, and then a very
accurate result can often be obtained.

Variational Principles for Diffusion Theory

There are many reactors for which the neutron spectra are not modified
very much by changes in shape. For such reactors the change of critical
size due to a change in shape is given with fair accuracy by a one-group diffu-
sion theory. One method for calculating the change of critical size with shape
is to use buckling conversions (as outlined on page 51). This approach is
restricted to the simpler changes of shape, and some feel for the choice of extrap-
olation lengths is required if consistently accurate results are to be obtained.

The variational principles given by Ackroyd (26:2") are well suited to
deal with critical size-shape problems. Some of the results which have been
got are indicated here; they are not difficult to derive from certain isoperi-
metric inequalities associated with the variational principles, and they are
obtained with very much less effort than by other methods. The variational
principles have also been used by Ackroyd and Perks (¥ to check some

71



aspects of the accuracy of difference solutions of the diffusion eguations.
A detailed review of the use of variational principles for one- and two-group
diffusion theory is given by Ackroyd (37,

Variational Principle for One-Group Heterogeneous Reactors

The one-group diffusion equations for the flux ¢, in the core V,, and the
flux ¢, in the reflector V, are taken to be:

(Z Dll 0, 2?;) Y =0in V, (72)
and:
3 04}
V'(Z D,, g a;) ¥y =0in V, (73)

i=1
for an orthogonal co-ordinate system (g;, g, ¢3). The diffusion coefficients
Dy, and Dy, (i = 1, 2, 3) are in general independent positive functions of posi-
tion. The coeflicients y2 and w? are also positive functions of position. The
boundary conditions for the fluxes are assumed to be:

$y =y, on S, the interface of V, and V,
Yy =0 on S, the bare surface of V, ‘
and on S;, the normal component of the neutron current is continuous, i.e.:

. 33
N 4 \1 U, Ofy :
l i D1 Q; 9¢; . H Qi 0q; |, )

If ®, and @, are continuous functions, then:

3 3
" [ Dy, (20 2 & oD,
/, [—1 o (aﬁ) —vor|ove [ [.4’ il )* . 2]“ 0
o 1 il T [ o i 2

(74)

(76)
provided that @, and @, satisfy the relaxed boundary conditions:
D, = D, S
§="ganeg | a7)
®,=0 onS, |

The equality sign in (76) holds if, and only if, ®; = {; and ®, = {,. An
important feature of this variational principle is that the boundary conditions
are not as restrictive as those for the diffusion equations and those used in
other variational principles, e.g. Hassitt’s modification of Kohn’s variational
principle 29,

Direct Application of the Variational Principle to a Homogeneous Reactor

For a homogeneous reactor the variational principle (76) reduces to:

| Dii (VO =202 {dV [ D, (V02 4+ uy? LAV =0 (78)
vV V.

This principle has been used directly by Ackroyd and Ball 3% to give upper
and lower bounds for the critical Laplacian and critical height of an elliptical
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cylinder of finite height and with an infinite reflector. The diffusion coeffi-
cients in the core and reflector were assumed to be the same. The upper bound
for the Laplacian was obtained by substituting in (78) approximations ®,
and @, for the fluxes ¢, and ¢,. A lower bound was obtained from the varia-
tional principle with the aid of the geometrical process called Steiner symme-
trization; Ackroyd and Ball ¥V, The calculations, which are very simple,
can be used also to give bounds for the critical height. For an example of
a completely reflected elliptical cylinder with semi-major and minor axes of
38.54 and 19.27 cm, the reasonably close bounds:

26.65 < h < 27.49 (79)

were obtained for the critical height A.

Rayleigh-Ritz Procedure and Optimized Parameters and Coefficients

The variational principle can be used with a systematic approximation
process, such as the Rayleigh-Ritz procedure 32 33, 30 to give a closer upper
bound for the critical Laplacian than can be given in many cases by a direct
application of the variational principle. The details are given by Ackroyd
et al 3?, and are illustrated by the calculation of the critical Laplacian of an
inhomogeneous slab for which the composition is given by a trigonometric
series in z, the perpendicular distance into the slab from one face.

Other systematic methods are those of optimized parameters (33 39
and coefficients, and it is perhaps most easily understood by means of exam-
ples. To illustrate the method of optimized parameters, consider a finite
circular cylinder with a complete infinite reflector. The approximations for
the fluxes are taken to be:

D, = A J, (ar) cos (Bz) in the core V;, 0 < r < g,
— ¢ < z < ¢ with diffusion
coefficient D,, and Lapla-

cian A%
K, (vr) in the side reflector V,,
D, = AJ, (xa) K“ ‘-7 cos (Bz) a<r<ow, — <z cwith
Ava) diffusion coefficient D, and
Laplacian — u,?
Dy = AJ, (ar)exp | 8(c — z) ! cos(Bc) in the top reflector Vj,

0<r<a c<:z<owith
diffusion coefficient D, and

3
Laplacian — p,*

K,(vr) in the top corner reflector V,,
D, = AJ,(xa)cos (Bc) K" exp ) d(c—z)! a<r <o, c<:z< oo with
«va) diffusion coefficient D, and
Laplacian — p,?

(80)

The coefficient A is chosen so that @, is normalized, i.e.:
/ D24V — 1 (81)

J v
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The functions (80) are substituted in the variational principle:

» 4 el

D g o pe (av =222 (82)
D, Jw
to give an upper bound %2 for A% The parameters «, 8, y and & are chosen
to give the least upper bound for A2 which is consistent with the choice (80)
of approximations for the fluxes. Note that if the properties of the region V,
are suitably chosen, the expressions are exact ones for the fluxes. Since the
method of optimized parameters is known to give the exact solution for the
fluxes in special reactors, and one knows roughly that changes in the compo-
sition of the corner reflector do not have a great influence on the critical
Laplacian for the core and do not affect the flux appreciably, except in the
corner and its neighbourhood, one expects to get good results over a wide
field. This contention is borne out in Figure 3 (for some of the reactors of
Table V1I) where variational flux plots are compared with a numerical method
of Hassitt 3 which is based on finite difference equations. The method of
optimized parameters has been used by Ackroyd and Perks ¥ to obtain
flux plots for finite elliptical cylinders and hexagonal prisms with complete
reflectors.

TasLE VII

No. of Regions per Laplacian of the Central Percentage Errofr

Reactor Half Reactor Region of the Reactor in Laplaman_ 9

No. Central Region
Core Total 0.P.C. F.D.E. 0.P.C. F.D.E.

1 1 4 0.004810 0.00468 — —

2 2 5 0.005977 0.006044 — -
3 i 4 0.004957 0.004975 0 4+ 0.29
4 2 5 0.007271 0.00736 0 4+ 0.89
5 2 5 0.006666 0.006733 0 + 0.78
6 6 9 0.008270 0.006382 0 — 10.40

The method of optimized parameters can be used to obtain both an
upper bound for the critical Laplacian and an approximate flux plot for
reactors with multi-region cores. However, there is a limit to the accuracy
that can be achieved in such cases with the method of optimized parameters,
because in the examples where exact solutions are known for reactors with
multi-region cores, the fluxes in all but the central region are expressed as
a linear combination of two independent functions. In the method of opti-
mized coefficients the flux in each region of the core, except the central one,
is expressed as a linear combination of two independent functions. The
arguments of these functions are determined by the method of optimized
parameters, and the coefficients are obtained by the method of optimized
coefficients. In Figure 3, flux plots are determined by the method of optimized
parameters and coefficients and the difference method is compared for
reactor 2. The upper bound for the critical Laplacian is for this example 1.1 %
less than the estimate of the difference method for the critical Laplacian. Thus,
in this example, the method of optimized parameters and coefficients gives a
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better estimate for the critical Laplacian than the difference method. The
method of optimized parameters and coefficients (O.P.C.) can be used in this
way to test on a one-group basis finite difference equation methods (F.D.E.)
for solving the diffusion equation. In Table VII, the Laplacians for a number
of reactors have been obtained by O.P.C. and F.D.E. methods. The reactors
are in the form of finite circular cylinders. The critical value of the Laplacian
for the central region of the core has been calculated in each case.

The reactors 3, 4, S and 6 were chosen so that the critical Laplacian of
the central region could be calculated exactly. In the case of reactor 2, the
O.P.C. result is more accurate thant that of F.D.E., since O.P.C. always gives
an upper bound for the Laplacian. One also expects that for reactors not
significantly different from 3, 4, 5 and 6 the O.P.C. results for the Laplacian
should be better than those of F.D.E.

FIrRST ORDER PERTURBATION THEORY

In some problems it is necessary to estimate the effect on the criticality
of a system when small changes are made, either to the geometry or to the
material composition. In such cases it may be preferable to apply perturbation
theory rather than to do direct calculations on slightly different systems; if
the changes are small, the comparison of results obtained by direct calculation
may lose much of its significance due to rounding off errors on the individual
results. Also by applying perturbation theory one may obtain the answers
to several problems more or less simultaneously. A further use for pertur-
bation theory arises in the adjustment of basic scattering data (cf. page 110).

The perturbation equation which forms the basis of all perturbation
calculations gives the change in some suitable index of criticality, in terms of
arbitrary changes Ax and AB in the « and P respectively. The terms in the
equation are very similar no matter what parameter is chosen as the index
of criticality, though the detailed construction of the equation obviously
depends on this. The general first order perturbation theory was given by
Pendlebury 3%, who derived the perturbation equation from the Boltzmann
transport equation. Tait ®”) gave a two-group perturbation theory using the
integral equations as his starting point, as did Fuchs 3% in his one-group
treatment. The general equation of perturbation theory can also be derived
from the variational equation.

An outline of the derivation of the equation of general perturbation
theory starting from the time-dependent form of the Boltzmann transport
equation (1) will now be given, followed by the reduction to multi-group
form. The multi-group form in terms of an alternative index of criticality
— the collision generation criticality index — is also given.

In the first instance the index of criticality is chosen to be the time
constant A of the system; in terms of the time-dependent neutron flux
D(r, v, Q, t) this is obtained by assuming A is the maximum eigenvalue occurring
in the general solution:

Oz, Q1) = ¥ e, v, Q) exp (4 1) (83)

i

Since A is the maximum value of the A, it follows that D(r, v, Q, t)is everywhere
positive, and the system is subcritical, critical or supercritical dependent on
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whether 2 is negative, zero or positive. The Boltzmann equation to be solved
for A can be expressed in the form:

2 (7, v, Q) = — Q.grad Bz, v, Q) — a(z, V) B(r, v, Q) |
? (84)
_+_

41,, j ] BIn(,Q »vQ) | o v,Q)dv d

where &(r, v, Q) satisfies the boundary condition that it is continuous across
all interfaces, is zero for all incoming directions at a free surface and is positive
everywhere. Note that there are slight differences in notation for the integral
terms in the Boltzmann equations (1) and (84).

Before proceeding further, one must introduce the adjoint equation
(this is essential in order to eliminate terms representing changes in the neutron
flux @ in the final equation). Suppose L is an operator and is a function of
variables denoted by £, if P and Q are functions of & then the adjoint operator
of L, which is denoted by L+, is defined by:

fPLQda: f QL' PdE (85)

where the integrations are taken over all £ space. Thus the adjoint of grad
is — grad, and of:

f/‘ﬁ e, Q v, Q)L dv dQ, s // B r(n,Q-v, Q)| ...dv,dQ.

/o

If the adjoint of @(r, v, Q) is written as @+(r, v, — Q) then the equation
satisfied by this is:

o
2\V ¢+(£a v, — Q) — Q'grad (D+(Ea v, — 9) - OL({:, V) ¢+(£1 v, — 9)

1 l (86)
i ./IB LR Q-V Q)L DNV, — Q) dv dY

and the boundary conditions to be satisfied by @+ (r, v, Q) are that it is conti-
nuous across all boundaries and is zero for all incoming directions* at a free
surface and is positive everywhere. (N.B. If the adjoint function in the above
equation had been written as @+ (r, v, + Q) then one would have had to
make this zero at a free surface for all outgoing directions.) It can be shown
that A+ = A. To obtain the change AX in A resulting from (small) changes
Aa(r, v) in afr, v) and AB[r, (v, Q" ~ v, Q)] in B[r, (v', Q" v, )] one considers
the ordinary equation for the original system and the adjoint equation for the
perturbed system (or vice versa) and after some manipulation obtains the
perturbation equation:

* This is actually a consequence of the definition of the adjoint operators and of

the boundary conditions in @+,
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A7\ /]f ‘1; ¢(£’ v, 9) ¢+(I’ Vg Q)dVdeT

= — jf/ Au(r, v) D(r, v, Q) B*(r, v, — Q)dvdQadx ‘

: @87
e [[[[] 201002 - n 2 00 n0)

DH(r, v, — Q)dv' dvdY dQd-~
( [ .. dr implies integration over all space.)

This gives the change A in A due to specified changes in the « and 8 in terms
of these changes and the angular flux and its adjoint for the original system.
The multi-group form of the equation can be obtained by writing:

B, v, QD) = X 05D £)

.~ |

(88)
RN JE R SR

i

where @ (r, Q) represents the angular flux of neutrons in group i. fy(v) defines
the spectrum of neutrons in group 7, f(v)dv being the probability that the
neutron speed lies between v and v -}- dv. It is usual to take:

fi{(v) = g(v), say for v; < v < v;,;, and otherwise zero

{ (89)

C; = C, a constant, for v, < v < v;,; and otherwise zero

The group constants a,(r) and 8,,(r) for each material and for the particular
case of isotropic scatter are defined by:

o) = [ atn fion )
o o)
B = | v [ 81500 (S0
] o 7
These definitions are discussed by Parker 39, Hence one obtains:

AN ff 2 v—l @1, Qb H(r, — Q)dQdx

T /]‘ E Aa (D, QD *(r, — Q)dQdx g ©1)

T f Z ZABHQ)@,-(';)@;*(C)dT ]
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where:

O,(r) = f D (r, )dQ /
( 92)

D) = f D,H(r, Q)dQ \
s

which is the corresponding multi-group form of the perturbation equation.
In deciding the relative criticality of two systems it is only necessary to know
the sign of the RHS in equation (91). If, however, one requires a measure
of the deviation from critical, one then needs to know absolute values and
under these circumstances, for example, it may be more convenient to work
in terms of the collision generation criticality index A defined on page 83,
and to have the perturbation equation expressed in terms of it. The trans-
formation of equation (91) into the corresponding equation involving the
generation criticality index A will now be considered.

In column 1 of Table VIII below, two sets of group constants are given
and the corresponding time constants for same system.

TaBLe VIII
1 2
Time Time
Constant Constant
By Bis - ABy \
1 14{: A 9’(’1 iy “‘; A A
AB,; (A - AA)
2|2l 0 | @+aBy | o
%+ Aoy

The data in cell (2, 1) of Table VIII arises because A is the number by which
the B, have to be multiplied to make the system critical, that is, have a zero
time constant. The information listed in column 2 represents the corres-
ponding situations to those listed in column 1 for the same geometrical system
when the «’s and B’s are changed by amounts Ax and AB.

The situation represented by cell (1, 2) of Table VIII can be thought
of as a perturbation of the situation represented by cell (1, 1) and this is des-
cribed by equation (91).

The situation represented by cell (2, 2) of Table VIII can be thought
of as a perturbation of the situation represented by cell (2, 1). Equation (91)
can be used to derive the corresponding perturbation equation. The A\ = 0,
and Ao and AP to be substituted in equation (91) are:

Ad = Aai (

AB = (A + AA) (51’5 iy AB'[J‘) — Aﬁﬁ = AAB:’:’ + BiiAA

(93)
(neglecting AB,;,AA term). ‘
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Whence:
A
ﬁfz ZBii(C)q)i(K)CDj-i-(c)dT

N /f 280D, D (7, — D= ¢ B

/

— / Q 2 280D, ()=

One further equation is of particular interest and this obtains when
is small (hence A ~ 1). In this case, cell (2,1) of Table VIII can be thought
of as a perturbation of cell (2, 2) with:

A)\ _— 7\ '
o - ‘ 95)
AB=(1~— ARy ‘
Substitution in equation (91) gives (for small 2),
an wi, o
M‘/U / A 5, D6 DD, — Q)dde
_(1—A) AN . .
T 4n o Bi DD (r)D;+(r)d= (96)
s/

SPHERICAL HARMONICS METHOD

The spherical harmonics method ¥ offers a convenient way of obtaining
reliable answers to the critical size or multiplication of simple systems in a
few-group approximation, in either plane or spherical geometry, when one
has only limited computing facilities. It can be generalized to other geome-
tries but its main practical use is in the simple geometries mentioned, in parti-
cular, in spherical geometry, and hence only this will be dealt with here.

The main feature of the method is the expansion of the angular neutron
flux @(r, p) in group i, in terms of Legendre Polynomials in ., thus:

e}

1

;1;5121(2/ + D, (PPy() ©7)
— here, r is the length of the radius vector from a point to the origin and p.
is the cosine of the angle between the direction of motion of a neutron and the
radius vector. It follows that ¢, , is the scalar flux and ¢, ; the vector flux
of neutrons in group i. The multi-group transport equation for the case of
isotropic scatter* in the stationary state and without source terms, is:

0, ) | (1 —u?)dD(r, w)
or r oW

¢i(ra P-) &=

+ a (B, w)

1 ~ Y41
=i ji Qi s d| 98
22,4“’)f_1 (r, W ©8)

* The method can be generalized to take anisotropic scatter into account but
the resulting mathematics is somewhat more involved. It is discussed to some extent
by Davison (1,
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where «,(r) is the inverse mean free path of neutrons in group i, and 8,,(r)/a,(r)
is the average number of neutrons produced in group i at a collision of a
neutron in group j.

Substitution of (97) into (98) gives, after some manipulation, the infinite
set of differential difference equations for each of the regions in the system:

NP

‘Pi, 1e1 T (21 + l)ai¢z',l /

d —
+[gdr_([ ',‘1)%‘{"1,1—1:So.lzpfi%'o \

(constant material density in each of the regions is assumed)

where 8, ;= 0 if /# 0, =1if /=0. The general solution of these differ-
ential difference equations can be expressed in the operational form:

(99)

:;Df Py, ‘—VF,,I(D) "o ! (100)
d gy A )
where D = ar and F; , ,(D? is given by:
(I + DF; ; ,.1(D?» + @I + 1o,F, ; (D? + ID?F, —1(D*) =0 |
(101)
Fj,?‘.O = 81’,1’ F,, o BJ:"

The general solution of (100) embraces the solution of (99); for example,
if it is assumed that {,, is known, then the solution of ¢;, from (100) contains
more constants of integration than are required by (99). One must bear this
in mind when obtaining solutions by way of equation (100).

To obtain an exact solution, that is, to determine the #n, , for all /, involves
the solution of the differential equations (100) and in the limit / ~oo these
become infinite order equations. An exact solution is therefore not feasible
in practice, but an approximate solution is obtained by setting ¢; y ., =10
for some particular value of M, and this leads to what is known as the Py
approximation. It is interesting to note that when M = 1, i.e. the P, approx-
imation, the solution is in fact that of simple diffusion theory When it is
assumed that ¢, ., = 0 it follows from equation (100) that:

E Fj ime1(D?) i rd; 00 =0 (102)
j
whence:
1F;, & m+ 1Dl rdso{ =0 (103)
The solutions r{; , can then be expressed in the form:
Mhio = 3y ARG exp () (104)
3
where v, are the roots of the determinant:
IFy, o, 342001 = (105)

Some of the roots may be complex. The roots occur in pairs of the form
- v but these are treated as distinct in (104). R,(v?) is the co-factor of the
term F, ;y.;(v?) in the determinant:

IFjims nOWil-
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A, are constants to be determined later by the boundary conditions. The
solution for y;; can now be obtained from (100) bearing in mind the need
to satisfy equation (99) and the assumed condition that Usimp1= 0.

ir) = _?:Aksf./(vk)ﬂz(vkr) { (106)
where: - -
Hya(2) = Hi_y(2) — 2/ + DHY(2)/z ( -
H@) = ez, Hy) = el — 1)z
and:
([ =+ l)si,H-l(V) + (ﬂivl)ai' Si.l 7 [Sz'.l—l =0 /

(108)
Suo = VRO S5y = X BR) — R ()

The above solution applies to a source-free region. Where sources are pre-
sent an appropriate modification to the solution may be necessary, though
sources can often be taken into account by application of suitable boundary
conditions. Davison V' discusses in some detail the effect of various order
approximations and the boundary conditions to be applied with the method
in the one-group approximation, and the same discussion applies to the
multi-group case. Briefly, the approximation used is usually odd order
(i.e. M, odd) on the grounds that an even order approximation does not in
general give a much better result than the previous odd order approximation
and involves more work. The boundary conditions to be applied are:

i) At an interface, , (r) continuous for / = 0,1, .. M. (109)
ii) At a free surface, either:
\

a) D(r,u) =0 for all negative roots of Pya(p) = 0 (iee. \
¢ values representing incoming directions) — this is |
known as Mark’s boundary condition

or b) / RERQ(r, wWdu =0, n=0,1 ..., (M—1)2 > (110)

— this is known as Marshak’s boundary condition. The
relative merits of (@) and (b) are discussed by Davison . |

iii) 1If a source of neutrons enters from the outside, this can be taken
into account by setting either:

a) @(r, ») = some appropriate values, for all negative -
roots of Py,,(w) =0
0
or b) / u? @ (r, w)dy. = some appropriate values for \ (111)
J —1

n=201,...,(M — 1)/2. /

iv) A central cavity with or without source can be taken into account
by boundary conditions analogous to (i) and (iii):
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a) @, ) = O(r, — @) + S(n) for all positive roots of \
Py 1(p) = 0, S(1) source strength in direction w \
~l 0
or b) / pE D (r, pdy = j w2 D (r, w)dp (
. =
a1
+ / wHIS(Wdy 1= 0,1, ..., (M — 1)/2
0 |

If a neutron population is maintained in the absence of sources, that is,
the system is critical, then the application of the boundary conditions leads
to a homogeneous set of simultaneous equations for the A, and elimination
of the A, leads to a determinantal equation for the critical dimension. If
the system is subcritical and sources are present, one is able to solve the set
of simultaneous equations resulting from the application of the boundary
conditions, for the A,; thereafter the neutron scalar and vector flux distri-
bution are readily determined and hence any multiplication which may be
required is obtained.

The spherical harmonics method is not the ideal method of solution
for use on high-speed computers. It suffers from the disadvantage that the
set of equations (99) is not stable in the sense that their solution — numerical,
or semi-analytical as in the present case — leads to an accumulation of error
during the computation. It is therefore essential to pay attention to this
feature during any numerical work, and when necessary, to use a large number
of significant figures. This disadvantage sets a limit to the usefulness of the
method and the difficulty increases as the number of groups and number
of different regions increases; hence it is desirable to restrict oneself to only
a few groups and a few regions.

THE S, METHOD

The S, or Carlson method is a multi-group method which is particularly
well suited for use on high-speed electronic computers, for solving many
of the problems of neutron transport theory. In particular it can be used
to determine critical sizes and multiplications of subcritical systems in plane,
spherical or cylindrical geometry. The original version of the method, and
several of its developed forms, are due to B. G. Carlson and co-work-
ers (4445:4647.48) a5t Tos Alamos. Some independent development work
has also been carried out by Underhill “® and his group at Aldermaston,
notably in connection with the version of the method which takes anisotropic
scattering into proper account; this particular aspect is dealt with separately
on page 89. In many problems, anisotropic scattering is adequately taken
into account by means of the transport approximation and in this, appro-
priate modifications are made to the cross sections (cf. page 110) which are
then used in conjunction with the assumption of isotropic scattering. It
is the particular case of isotropic scattering which is considered in this Sec-
tion though most of the main features of the S, method are common to both
isotropic and anisotropic scattering.

The main features of the original S, method and the discrete S, method
developed by Carlson and co-workers are now described with particular
reference to the problems of critical size and multiplication- determinations
in spherical geometry. For an extension to cylindrical geometry, reference
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should be made to the papers by Carlson and co-workers 444549 The pro-
blems of critical size and multiplication determinations are steady state pro-
blems but the S, method can also be used with appropriate extension to deal
with time-dependent problems, though these will not be considered here
(cf. Carlson 4447)  In the special class of time-dependent problems in which
the neutron population varies exponentially with time, the problem reduces
to a steady state one by making a substitution of the form:
@g(rs s 1= q)g("’ l‘-) exp (7\,)
(notation here applies to spherical geometry, but the substitution applies
generally) where @ ,(r, @) is the neutron scalar flux per unit change in p about
the direction . (w is the cosine of the angle between the motion of the neutron
and the radius vector.) Suffix g indicates the neutron group.
The group approximation in spherical geometry gives the following
form of the steady state transport equation:
{2 (11— MZ)

_+_

E ‘ o (E)
(“OH ; +91q @, (r, ) = S,r) + S, B(r,p)  (113)

where «, is the inverse mean free path for neutrons in group g at unit material
density, p is the material density,

2° —d
Vit (114)
0,0 = [0 wa )
1

o

S (I’) = 1 v BJ Jcby'(") ‘

where B, is the transfer probability for transfer from group g’ to group g
at unit material density. o, and $,, can be functions of r due to changes
of material composition.

S, B(r, w) is an externally imposed neutron source. (Externally does
not necessarily mean outside the system; it may for instance refer to a body
source.) This can often be taken into account by the appropriate applica-
tion of boundary conditions.

In the critical size calculation the non-zero solution of the homogeneous
equation obtained by setting S,B) = 0, is required. This is the usual eigen-
value problem with the critical dimension as the required eigenvalue.

The S, method consists of dividing the range (— 1, 4- 1) of w into »n inter-
vals and assuming that @ (r, w) is linear function of w in each interval. It
is often assumed that the intervals are equal, but this is not essential. Denot-
ing the intervals by (w;y, w)j = 1.2 ...on5 o= — 1, w, =1, @,(r, p) is
given by:

(P« Wy 1) ( )
Dy(r, ) = = D, 1) +
(( j ;71) & ( By — - 1)
for p,, <p<wp;
The order of the approximation, », may be any positive integer and when n
equal intervals are used it is usual to refer to it as the S, approximation.
Substituting (115) into (113) and integrating over each of the intervals

(#j_1s W, in turn, the following set of n ordinary differential equations are
obtained:

<@, (r, L;_y) (115)
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d b )
(a, ar + P + P‘Xg) D,(r, 1) /

(116)
0 .
+ (0 v J + P%) D,(r, py—q) = 28,(r) + 28,,0(r) ﬂ
where:
a; = (2p; + p-p)/3
a; = (w; + 2p;_1)/3
2
R LR (T 2 _ .o — 2 !
b:l 3(“‘1 . P’j—l) '3 !“‘J Bt 551
(117)

) This integral may be approximated to
/ S, ®(r, H)dil in any suitable way, but whatever
S, (B(r) — | I ) wimt approximation is used it is ultimately
- " controlled by the need for neutron con-
(8 = Bs-) servation.

These equations are then solved numerically by iteration, using a simple
finite difference approximation, and for this purpose the radius r is divided
into 1 intervals (r,_, r,-)i = 1,2, ... 1. An essential condition for stability
is that for (— 1 < p << 0) the radial difference equations are integrated from
the outer towards the inner parts of the system, and for 1 = p > 0, the equa-
tions are integrated outwards. In other words, they are mtegrated in the direc-
tion of the neutron motion. This also simpliﬁes the application of boundary
conditions. If this procedure is not followed, truncation errors in the nume-
rical integration build up in an uncontrollable way.

In the integration of equations (116), S,(r) and S,;'E)(r) are assumed to be
known. Since the boundary conditions are usually specified at the outer
boundary, it is in general preferable to carry out the inward integrations first.
This requires another equation for each involving ®(r, — 1) to supplement

equations (116) and this is obtained by setting w. = — 1 in the transport
equation to give:
d "
; et ol [, — 1) = 8,0) + 5,5, — ). (118)

In carrying out the iteration, each group is treated separately and it is
usual to start with the highest energy group, i.e. with g = 1. A pass through
all the groups with the subsequent determination of a new estimate S',(r)
to S, is known as an outer iteration. In some variations of the method, S,(r)
is divided into components, one of which is due to the contributions from
elastic and/or inelastic (n, n") scattering, and another component due to
fission. The contribution to S, from elastic and inelastic scattering is of the
form (say):

v a,y'nq)rf’ = lsm

l\) |

ie. B',, is a triangular matrix, and in such cases an iterative procedure can
be carried out on each group in turn, iterating with respect to @, in ;S, but
keeping the contribution from fission fixed. An iteration of thlS kmd is
referred to as an inmer iteration. This is the principle of the fission gener-
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ation technique in which the contribution to S, from fission is kept constant
during the complete outer iteration.

For a subcritical system in which an external source is specified either
by way of boundary conditions or a distributed source, the ®, converge
to finite values and the convergence can be assessed, for example, by the
evaluation of the ratio (S,>/<S,> where S, is the value of S, (or that compo-
nent arising from fission) at the beginning of an outer iteration and S, the
value at the end. (S,) represent suitable averages taken over space and it _
is convenient in practice to take them as volume integrals. In the subcritical
system with sources, <S,»/{S,»>~ 1 and it is only necessary to specify the
degree of convergence required in order to terminate the iterative procedure.
If the system with sources is by chance supercritical, then: S ISy~ A< 1.

In order to determine a critical size, the solution of (116) is obtained
with S, = 0 for some estimated critical dimension of the system. In this
case, {S,>/{S,> in general converges to a limit 4 1: if the limit = I then the
estimated dimension is the correct one. If the limit of S (8,5 = A (say*)
then the system is subcritical or supercritical, dependent on whether A is
greater or less than unity. (A is in fact the inverse of the generation constant
(cf. page 92) when S, includes the source from both scattering and fission
processes.) Proceeding by a process of iteration until A is arbitrarily close
to unity, the critical dimension can thus be determined.

The accuracy of the S, method can be increased for certain types of
problem by imposing an integral conservancy condition on the solution of
the equations (116), so that truncation errors do not lead to an artificial increase
or decrease in the neutron flux. The transport equation itself is an equation
of conservancy and so also are equations (116), but in view of the numerical
approximation, (116) do not conserve neutrons exactly. In other words,
if they are integrated in accordance with the approximations used, over any
given volume, then the net flux of neutrons out of the volume is not exactly
equal to the net rate of generation of neutrons within it. For many problems
this leads to negligible error but for some problems, for example those in which
the transmission of neutrons through thick layers of material is required,
it is important that the overall conservancy of the neutrons should be preserv-
ed. In this case it is necessary to introduce into the iterative procedure an
integral type of conservancy condition over each volume cell considered;
thus if r,_; and r; represent two consecutive points in the integration mesh,
then the integrated net flux out of the volume between r,_; and r; over the
spherical surfaces r; and r,_; should equal the net rate of generation of neu-
trons within this volume. This conservation is obtained by altering the defi-
nition of the term b; in (116). The formulation of the conservancy condition
is discussed by Carlson 4+ 49 The S, method (in one dimension) has been
programmed for the IBM 704 by Carlson and his group and a description
of the code —SNG —is given in Report LAMS-2201 45, An isotropic
(one-dimensional) S, code is one of the options in the multi-purpose code
SAINT (cf. page 89) written by Underhill and his group at Aldermaston.
With any of these one-dimensional codes, problems can be solved in either
plane or spherical geometry. The case of plane geometry is obtained from
the equations for spherical geometry by setting b; = 0 (cf. equations (116)).

Improved and simplified versions of the S, method have been developed
by Carlson and co-workers and though two different forms exist, both are

*  This is actually the inverse of the collision generation constant defined on page 92.
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known as the discrete S, method. The first form of the discrete S, method
was described at the Geneva Conference “® and in Report LAMS-2201 4%
though in the latter it is referred to as the modified S, method. It is coded
as the SNK code (cf. LAMS-2201). The second form is the basis of the
one-dimensional code DSN and the two-dimensional code TDC and is des-
cribed in Report LA-2260 47, The main features of these two forms of
the discrete S, method will now be described.

The first discrete (or modified) S, method, is not as rigorous as the ori-
ginal version of the S, method but it is considerably simpler and therefore
easier to apply. The basis of the method is to replace the S, equations (116)
by equations of the form:

_ C,;
<u, o 422 +oa>¢g<r, B — O p ) = 25,0)  (119)

where the C; are constants to be determined; p; ; < p, <uy;;j=12,...n
b, =0; u, = — 1. The assumption of equation (119) is a somewhat arbit-
rary step to take and its justification lies in the fact that it greatly simplifies
the numerical solution and ultimately leads to reliable results.

D (r, 1;) is defined by extrapolation thus:

(u tj-1) (5 — 1)
® == 0 Y L4 120
o(rs 1) = = 0 or, Ty — v D(r, u;-1) (120

It is further assumed that:

1 ;
0, = E 3 (1 — tin) Pylr, 1) / (a)
and: ' : (121)

J,(r) = E% (4 — -0 @@, 1)) \ (b)

[ @, is the scalar flux of group g neutrons, and )
{J, is the net outward flux per unit area of group g neutrons )

Integration of the transport equation over w. requires that:

(4 +2) 10+ i) = 5,0 (122

which is a necessary condition of neutron conservation. Equations (119)
to (121) are therefore conditioned to satisfy this equation, thus leading to the
determination of C;:

(_ 2
C—2“L, (& — vy 1)22(?% 1) g

The [; are determined (somewhat arbitrarily) so that in the diffusion
theory approximation (scalar flux represented as a linear function of ), the
component of the vector flux arising from the p component in the scalar
flux @ is exactly satisfied by the approximations used (this condition is auto-
matically satisfied in the original S, approximation). Thus:

1 +l 1 _ 1
5 f widp = 5 3 (@ — Wbt =3 (124)
2 J

=1

i

(123)

(Carlson refers to this as the diffusion theory condition.)
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: 1 ;
With equal intervals, (w; — w;—;) =2/n and p; = - (»; + w,_,) + ¢; this

T/ 1
condition is satisfied provided ¢ = ;[(1 -+ 51—2>§~ 1] sign (w; -+ w;_q).

The solution of equations (119) follows by iteration in a similar way
as in the original S, method, and the integral type of conservancy condition
can also be included to give improved accuracy.

In view of the approximations made in the modified S, method, detailed
aspects of the results, such as the angular distribution of neutrons at a given
radius, are perhaps not as well represented as in the original S, method but
the overall representation in terms of net fluxes, integrated scalar fluxes and
eigenvalues, is found to be very good.

In the second form of the discrete S, method, the difference equations
are obtained directly from the differential equation. Thus:

(1 = w900,

- r bp. + p(r)aﬂ®ﬂ(r’ FL) = Sg (125)

0
®5r D(r, p) +

becomes:

p‘mui; gD_r/,i,m B Qg,i—l,m( + Y mSi i q)y,i,m - ¢g,i,m—1 vl [
(126)

=+ 2hi¢y,i,m = Aisg,i \

where @, ; ., is the angular flux of neutrons in group g at the mesh points
Tip e (=12 ...; m=0,1,2,...,1)

Aj=ri—riy

{t,, is an average p over the interval (i,,_,, ,,)

o Gy f
Yo+ ry)2

h, = PiaaAz‘/z

p;and S, ; are mid-point values for p and S,,.

(127)

The v,, and u; are chosen to give conservation when the equations are inte-
grated (cf. LA-2260) “4? so that:

ug=30r? + r?_)/2(r® — r*,) (
and: ) (128)
Ym = Ym-1= — B — U1y Y11= — [7‘1
iDg,,«'m is the angular flux at the mid-point of the mesh and the relations:
Q)y,i,m + (Dg,i—l,m =20

g,i,m [

- (129)
g¢,i,m + (Dg,i,m—l == 2®g,i,m \

are assumed to hold. Thus (126) simplifies to:

Pty F Y Si A Dy ) — B + VoSt =+ Py v (130)
— 2Y 5Dy i m1 = AS,;

The ,, are fixed by application of the diffusion condition as in the previous

version of the discrete S, method.

The following relations are also used for the scalar and vector fluxes:
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q)y,i = ; ; &)g,i,mAp‘m /

Il = ,
Ja,i = zd sl'mq)q,i. mA{J‘m \

(131)

Given S, ; and the boundary conditions, equations (130) are then solved to
glve ®, ., for each m in turn, beginning with m = 0. Note that for m = 0,
g.=—1and y=0. In order to reduce round-off errors, equations (130)
are solved for @, ,_, . if u,, is negative, and for @, , , if 1, is positive. This
is equlvalent to integrating in the direction of the neutron current as was
necessary in the original S, method. The values obtained for @, ,, allow
a new estimate of S, ; to be made, and the final solution is obtained by itera-
tion in the usual way.

ANISOTROPIC S, METHOD

It is worth noting that the simplified form of the DSN equations does
not save much machine time, but the full advantage of the simplification is
apparent in two dimensions (TDC), where a very considerable saving is made
on the time taken to do similar calculations based on a two-dimensional
extension of the ordinary S, equations.

The anisotropic version of the S, method allows one to take into proper
account the effect of anisotropic scattering, and this is particularly important
where the transport of neutrons in hydrogenous substances is concerned.

When anisotropic scattering is taken into account the Boltzmann trans-
port equation in multi-group approximation and in spherical co-ordinates
can be written:

pd (YD N g
? * or " r 8[}. + ag0(r) { D (r, w) /
I % (132)
T on > By (We(r) Dy (r, 1)dy'dd
T =

Byy(n) is the transfer cross section representing transfer of neutrons from
group g’ to group g which are scattered through an angle cos! . for material
at 1 g/ems3,

= py — V(1 — (I — w2)cos ® (133)
Other symbols are as defined on page 83.

Expanding 8,,() in terms of Legendre Polynomials P,(w) and using
the relation:

1
l(“')—"(*‘”’(“)“EEl o PP () cos () (134)

where P, are the Associated Legendre Polynomials, the R.H.S. of equa-
tion (132) becomes after integration over ®:

I+ 1 P+l
_‘ V(, + 2 By Pudp(r) / P()D,(r, w)dy/ (135)

=1 I= o <1
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where:

-t
Bly'g = /
-1

In the S, formulation, the anisotropic source term is required to be
averaged over an angular interval (u,_;, u,)* and integrated over a radial
interval (r;, r;,,). Denoting this averaged source term by S(i, j) and using
the basic assumption of the S, method that @(r, u) is a linear function of
in an angular interval, p; ; << p < p;, a set of scalar products for all ¢i’
of the form :

1
By (WP (R)du (136)

G L I
S, )= D) X X ABraBrF, i) (137)
g=1 i=0 j'=1
can be derived. J and L are the o2l number of angular intervals and Legendre

moments respectively.
A By, and F (i, ) are defined as follows:

1 Ly
A, =—— P,(w)du for j > 1.
” (& — wim0) .//u,,, A
Ay =P(—1).
241 { M wpg —
By, = (T)— ; <Hjl_i> P (w)dy
Vi) g Hi+1 5
g e i A
g / <“~“f;1> Pl(u)dpz for 1 <j' < J.
o g, \B T oy
@+ /““’(uo =5 b
B,= "% == ) Py(p)dp.
L it L L (E
204 1) ™ — Uy
By = G [T (B B by,
oy b Hrbr-1

Fg'(i’j,) == / p(")éa’("a “‘.’f')dr'
Note: p(r) is required to be constant between
r;and r,.;. Hence: '

T \ |
Fa'(l’] ) = i PH—% i (Da'(ri’ l"'i') + (pg'(ri+1’ y‘i') i» ’

The form of equation (137) is the same as given by Carlson in LA 1891 “4),

The summation over ¢ * in equation (137) is limited by J, the total number
of angular intervals. The truncation of the summation over ‘7’ to L, however,
is purely a matter of expediency, as mathematically the summation should
be extended to infinity**. It can be seen from equation (135) that in practice

*  For y(= — 1), the source term required is the value at . = — 1.
** In practice it is usually adequate to take into account only 1 < 5, i.e. L = 5.
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the truncation occurs either from B! becoming zero for a large enough value
. of ¢/’ or from the moment:

241
o) (= [ P
-1
of neutron scalar flux becoming zero.

A machine code — SAINT — has been developed by Underhill and
his group at Aldermaston, to deal with the anisotropic source term given
by equation (137) above. SAINT is a multi-purpose, one-dimensional S,
code, with options for isotropic and anisotropic scatter calculation; versions
exist for use on 32K IBM 704, 709 and 7090 machines. An account is now
given of the salient features of the anisotropic scatter option.

In SAINT, the nuclear data is supplied in the form 8%, ,up to any reason-
able order of / on binary cards of a standard format. The summation over /
in (137) is carried out once and for all during the input stage of a calculation,
so during the course of a calculation, the source term is evaluated by:

S,6.) = X X Cle. 851D 40 )- (139)
2~ /i
This decreases the amount of computation needed at the expense of increasing
the amount of storage required. In particular, calculation time is effecti-
vely independent of the number of moments used.

The procedure adopted during the solution is the ¢fission generation’
iterative technique. Here the fission component of the scattering term is
split off from the rest of the scattering terms and it is assumed that fission
neutrons are emitted isotropically with an energy spectrum independent of
material or incident neutron energy. The contribution by fission is thus
handled by a *fission source term ’ which is recomputed from the neutron
scalar fluxes at the end of each ¢ outer iteration >. Within each outer itera-
tion the fission source term is unchanging and the neutron scalar fluxes appro-
priate to the fission source term are calculated. Thus, in equation (139),
only slowing down neutron processes occur and so the g’ summation is over
the range ¢’ = 1(1)g (g = 1 denoting the neutron groupof highest energy).

For the purposes of calculation within each outer iteration, the R.H.S.
of (139) is split up into an off-diagonal and a diagonal component:

g—1

S, 1) = ¥ ¥\ Cle g, )P, () + X Ce 8. /)P0, (140)

g=1 j J

and for each outer iteration one starts with g = 1. In this case, the first
term of the R.H.S. of (140) is zero and a one-group iterative process (‘inner
iteration’) is used to calculate @, to the required degree of convergence.
Proceeding to g = 2, the first term on R.H.S. of (140) is evaluated using the
already calculated ®@,, followed by another set of one-group iterations till
®, is calculated to the required degree of convergence.

This process is repeated, always evaluating the first term of the R.H.S.
of (140) once for each g in terms of the already calculated @’s, till the scalar
flux for the final group has been calculated. The outer iteration is then com-
pleted by the evaluation of a new fission source term.

The whole process is terminated when two successive fission source
terms differ by less than some predetermined value.
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This iterative scheme is particularly useful for problems where no fission
processes are involved; for example, calculating the transmission of neutrons
through a shield. Here only one outer iteration is needed to complete the
calculation, the inner iteration being taken to finality for each group in turn.

For problems involving a fission process (for example, a critical size
calculation) the degree of convergence to which each inner iteration is carried
is determined by the degree of convergence attained by the outer iteration.
This works reasonably well but a completely satisfactory scheme has not
yet been devised.

The code can be used for critical size calculation (no external source
present) or an external source can be specified either as an isotropic source
distributed over desired energy groups and regions of the system, or as a
shell source from which neutrons are emitted into specified groups with
specified angular distributions. In the external source problem, vector flux
analysis allows one to calculate any multiplication which may be required.
In all cases, either plane or spherical (but not cylindrical) geometries can be
specified.

In general, an anisotropic calculation takes about four times as long
as a similar isotropic calculation. For calculations on systems without fissile
material, anisotropic calculations are quite fast, a transmission problem invol-
ving 8 neutron groups in S, approximation with 50 radial points taking
of the order ten minutes on the IBM 709.

The code uses five tapes, distributed for the 1BM 709/7090 machines
over channels, A, B and C.

THE MONTE CARLO METHOD

The intsraction of neutrons with matter is basically a stochastic process
with the various probability laws which govern the process determined by
the nuclear physics. The probability laws can be specified in terms of neutron
cross sections and angular and energy distributions of the emergent neutrons
from the different types of collision. If such a specification of the basic
laws is made, either in tabular or analytic form, then the actual problem of
the interaction and transport of neutrons can be simulated by carrying out
a process of random sampling from the various laws in a specified order, and
accumulating the results obtained. This is the basic principle behind the
Monte Carlo method (in its applications to neutronics), and in its simplest
form an exact simulation of the system under consideration is aimed at.
Any departure from this physical reality is referred to as sophisticated Monte
Carlo and the main objective of sophistication is to obtain the most accurate
results with the minimum of effort, in other words, to make the most efficient
use of the effort put into solving a given problem. Special techniques towards
this end are interesting theoretically and they are also very important from
a practical point of view in a wide variety of problems. It must, however,
be emphasized that straightforward simulation methods do play a significant
part in Monte Carlo neutronics studies.

It must also be emphasized that whether straightforward simulation
Monte Carlo or whether sophisticated techniques are used, it is in general
necessary in practical application to do Monte Carlo calculations on an elec-
tronic computer if reliable results are to be obtained to any but the very sim-
plest of problems. The following paragraphs are therefore written with
this in mind.
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In the Monte Carlo method one is tracking neutrons from one collision
to the next, and the results can be accumulated as a function of time, or as
a function of the number of collisions, or as a function of any other suitable
parameter. In going from one collision to the next one begins, for a particular
neutron, with its position at a collision just taken place, its direction of motion
and its energy. The problem is then to determine:

i) How far it travels before having its next collision, and hence the
location of its next collision;

ii) What type of collision takes place, e.g. fission, elastic scatter, (n,v)
etc.;

iii) The number of emergent neutrons, their energy, angle of scatter
and hence direction of motion.

At this stage the process repeats itself and continues until either all the neu-
trons have escaped from the system or have settled, according to some pre-
determined criterion, into their eigendistribution. The determination of
(), (ii) and (iii) is carried out by appropriate use of random numbers from the
probability laws involved. This is now discussed in more detail.

iy Determination of path l'ngth. The distance which a neutron travels

from one collision to the next is dependent on its mean free path /, which is

a function of its energy and of the material in which it is moving. If x is

the neutron’s path length measured from its previous collision, then the

probability p(x)dx that the next collision takes place in x, x -+ dx is given

by:

X\ dx

p(x)dx = exp (\ 1,) E

The problem of determining the distance X which a neutron travels before

having its next collision is basically that of mapping the uniform distribution
f)dy = dy(0<< y << 1) onto the distribution (141).

(141)

Note that:
X
mu<m:1-uﬂ—7. (142)
\ /
This is to be identified with a random number, R, (say) in (0,1), giving:
X=101mh(l—Ry)=—1hR, (143)

where R, is random in (0,1).

If a determination of this sort takes a neutron across a boundary, then,
if the boundary is a free surface, the neutron escapes from the system, other-
wise the neutron must be re-located at the boundary with appropriate direc-
tion of motion and a re-determination of its path length in the second region
made using another random number and the mean free path applicable to
that region.

ii) Type of collision. The probabilities of the different collision types
are all explicit functions of the basic data. Let a,(E) (1 < i< k) be the
relative probability for collision type i for a neutron of incident energy E.
a,(E) is proportional to the cross section for reaction i. A random number
R is chosen and multiplied by:

k
S = Z a,(E)

i=1
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and RS is then tested consecutively against a,(E), ay(E) -+ ax(E), a,(E) +
a)XE) + a4(E), ... etc. Where RS first exceeds one of these partial sums,
the collision type is identified; thus, for example, if RS > a,(E) but a,(E) +
a,(E), then the collision is of type 2.

iii) Number, energy and direction of emergent neutrons. The number
of neutrons, where this is different from an integer, as in fission, can be deter-
mined by sampling in a way similar to that in (ii) above, either using the
experimental distribution of the numbers of neutrons per fission, or using a
pseudo distribution which gives the correct mean. In most instances this
latter procedure is adequate and allows the number of neutrons per fission
to be taken as one of two integers. It also has the advantage that by reducing
the spread of values which the actual distribution of the number of neutrons
per fission allows, it gives a better estimate of the mean value after a given
number of fissions.

The energy of the emergent neutrons can also be obtained in a similar
way if the possibilities are discrete with given relative probabilities. In cases
where the possibilities are not discrete and where the distribution has no
particular mathematical form as in the cases of experimentally determined
continuous energy spectra, and differential elastic scatter distributions, the
first stage is to divide the interval (0,1) from which the random numbers
are selected into K equal sub-intervals (generally, for computer convenience,
K is a power of 2). A chosen random number must lie in one of these sub-
intervals and correspond to a particular value of x, the variate to be sampled
from. In other words, the variate x is divided into K equiprobable intervals
and a suitable value of x taken to correspond to each inte