Thermal Neutron Scattering Measurements and Analysis

Y. Danon, E. Liu, C. Wendorff, K. Ramic
Rensselaer Polytechnic Institute, Troy, NY, 12180

NCSP Meeting, LLNL, March 18-19,2015

ST -------
Y=={3 nsselaer ﬂﬁﬁg I I n a cThe Gaerttner LINAC l:emer




Overview

¢ Performed some analysis of measured samples of high density
polyethylene (HDPE), and quartz (SiO,) at various temperatures
and different instruments (SEQUOIA and ARCS of SNS).

s Comparative and integrative study of MCNP (including the
evaluations), molecular dynamics simulations, and thermal neutron
experiments are in progress.

v’ Comparative study between measurements and MCNP
(evaluations)

v Comparative study between atomistic simulations and
measurements
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Thermal Scattering Overview

« Analyzed experimental data for High Density Polyethylene (HDPE)
and Quartz (S10,) using the Wide Angular-Range Chopper

Spectrometer (ARCS) at SNS.

— Quartz measurements were done at 20, 300, 550, 600 °C
— HDPE was measured at 295 K and 5 K.
— Incident energies at 50, 100, 250, and 700 meV

* ARCS has an angular range of -28° — 135°, Fine-Resolution Fermi
Chopper Spectrometer (SEQUOIA) has an angular range of -30° —
60°.

* In the progress of addressing issues in discrepancies between the thermal
scattering experiments and MCNP calculations.

« LAMMPS code i1s utilized to calculate the phonon spectrum, scattering
function S(Q, w) and scattering kernel S(a,3) for HDPE and SiO,.

» In the progress of addressing issues in discrepancies between the thermal
scattering experiments and atomistic simulations.
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Molecular Dynamics Simulations;
Thermal Scattering Measurements

Data Flow Chart:
Compare
Experiments with

MOCNP Models

; Compare
Thermal Scattering Measurements;
ENDF/B-VII.1
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SEQUOIA H,0 and CH, with MCNP models

» Use MCNP simulation of the incident energy spread.
» Comparison with several evaluations.

» More structure and larger differences in forward angles.
» Possible issues with how we run NJOY/MCNP.
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Exp/MCNP model differences and the possible
issues to address those differences

* H,O
— MCNP Quasi-elastic peak 1s narrower than experiment
 CH,
— MCNP Elastic peak is a delta function while the experiment’s
1S a near symmetrical curve

— MCNP Inelastic regions do not match experiment very
accurately

* The detailed reduction of thermal scattering experimental
results

— Need to be re-visited and be normalized carefully based on the
total cross section (ENDF)

« MCNP file is an 1dealized version of experiment
— Need to add spectrometer resolution
— Add sensitivity/uncertainty
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Step 1: Add spectrometer resolution

Polyethylene
. 102: ; ! ’ I 4 I 4 I 4 I j
* Broadening the mono- | Lo
. . E_=35meV £9 MCNP6.1-ENDF/B-VII.1
energetic neutron source ~ 0=25deg 69 (Eneray Tall)

to a Gaussian spectra
results 1n a better fit of
the elastic peak
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Check the change on H,0

Improvement at higher incident energies

* 55 meV, 25 deg 160 meV, 25 deg

g
&y 10°
Y
— MCNP6 without Res —  MCNP6 without Res
—  MCNP6 with Res _ i
10 ' MCNP6 with Res
o Experimental Data

* o« Experimental Data

20 40 60 80 100 10° 50 100 150 200
Scattered Energy (meV) Scattered Energy (meV)

@) Rensselaer “ngsP lifac™":

8
The Gaerttner LINAC Center




Step 2: Further Energy Resolution Issues

» Using trial and error, best resolution fit occurs
around AE/E = 3% (FWHM) for the MCNP
simulation at 55 meV

* The energy resolution measured by the

instrument scientists at SEQUOIA 1s about half
that, ~1.5%

SN == U T A G L @
® Rensselaer P linac
«;‘,m;‘@v NUCLEAR CRITICALITY SAFETY PROGRAM The Gaerttner LINAC Center




Step 3: Energy Tally Limitations

* Using a F5 energy tally to measure the DDSCS
1s not technically a perfect representation of the
experiment

 SEQUOIA and ARCS are TOF Spectrometers

* Changing the Tallies to F5 Time Tallies 1s the
first step

* Next 1s realize that the protons at the SNS do
not hit the mercury target instantaneously
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Step 4: Time Resolution

* Proton pulse at the SNS 1s 1 microsecond long

» This time spread 1s increasing the farther the
neutrons have to travel

 Add a1 us (100 shakes) spread to the MCNP
model 1nitial time of the neutron to compensate
spread

— Time and Energy Resolutions are treated as
independent even though they are really coupled
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Polyethylene Time Tally
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Return to Light Water

* 55 meV, 25 deg
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SEQUOIA vs ARCS Poly (1)
Energy Tally & Time Tally

« SEQUOIA:

55 meV, 25 deg « ARCS: 50 meV, 25 deg
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SEQUOIA vs ARCS Poly (2)

 SEQUOIA: 55 meV, 10deg = ARCS: 50 meV, 10 deg
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SEQUOIA vs ARCS Poly (3)

SEQUOIA: 55 meV, 15deg  ARCS: 50 meV, 15 deg
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SEQUOIA vs ARCS Poly (4)

« SEQUOIA: 55 meV, 40 deg ARCS: 50 meV, 40 deg
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Research Goals — Atomistic Simulation:
Molecular Dynamics (MD)

 Employ MD simulations to improve S(a.,[3) scattering kernel
for different materials.

e Current Evaluated Nuclear Data Files (ENDF) contain S(a,f3)
only at specific temperatures, interpolation for other
temperatures.

« Using predictive capabilities of MD the errors produced by
interpolation could be removed by simulating and calculating
S(o,pB) values at all needed temperatures.

* Work in progress for calculation of scattering kernels for
water, polyethylene, and quartz.
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Polyethylene - LAMMPS Simulation

* Adaptive Intermolecular Reactive Empirical Bond Order
(AIREBO) potential for systems of carbon and hydrogen atoms.

* Polyethylene (-CH,-)n chain.
— 400 molecules in chain, 1200 atoms.
— 296 K temperature.

— 0.1 fs (femtoseconds) time step
— 20,000,000 steps = 2 ns (€< This is the time simulated)

* Output: the location and velocity trajectory files which can be
transferred into the phonon density of states (PDOS) or dynamic
structure factor S(q,w) where q 1s a wave vector, and w a
frequency.
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Polyethylene discussion — S(a,p)

. PDOS >NJOY99 (LEAPR)

Generates thermal scattering data in ENDF format File 7
LEAPR for various temperatures:

MT=2 coherent elastic or incoherent elastic

MT=4 (incoherent inelastic): tabulated S(a,8) and T,

Calculates pointwise thermal scattering cross sections in
PENDF format, File 3 (cross sections) and
THERMR File 6 (double differential data):
MT=2 + 221 free gas
for solid, liquid and gaseous moderators
MT>221 incoherent scattering XS
MT=MT+1 elastic scattering XS

NJOY-99.90

ACER Generates thermal scattering data for MCNP(X) code
in ACE format

» ACE files 2 MCNP6.1 to generate double differential

scattering cross section (DDSCS) to compare with the
experiment.

*M. Mattes and J. Keinert, Thermal Neutron Scattering Data for the Moderator Materials H20, D20 and ZrHx in ENDF-6 Format and as ACE

Library for MCNP(X) Codes, IAEA INDC(NDS)-0470, 2005. r\ @
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15t Method: PDOS and The Scattering Kernel - S(a,p)

MD generated phonon spectrum can be converted to a scattering
kernel S(a.,f) Example: Polyethylene
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15t Method: Quartz
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Geometry of Inelastic Neutron Scattering

Experiments
momentum = fik energy = (hk)%(2m) Er kr
k=27/\
Ei E 6 = E - E
> fhw = Ei - Er

Measure the number of scattered neutrons
as a function of Q and w

- S(Q,w) (the scattering function for inelastic scattering)

depends ONLY on the sample
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2" and New Method: S(Q,®) — S(a,p)

* Transformation from S(Q,®) to S(a.,p):
o = h*Q* /2mkT
B=hw/kT
S(a,B)=kTS(Q,w)

where kT 1s the temperature 1n eV.
* In the process of calculating results.
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Future Studies

* Proper identification of the reasons associated with the
discrepancies.

e Finish the 224 and new method to calculate ACE file from
MD simulation.

» Better understanding of PDOS physics.

* Perform MD simulations using different force models and
try to improve upon the current ones.
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Recent Accomplishments

e Completed measurements of thermal scattering at SNS

— Quartz measurements were done at 20, 300 550, 600 °C at ARCS
instrument of SNS

— Both SEQUOIA and ARCS instruments of SNS were utilized for HDPE
studies

— HDPE was measured at 295 K and 5 K.

« Data analysis, MD simulations, and MCNP (with evaluations)
calculations are in progress
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